

Version 6

24/03/2014

Étude sur la gestion quantitative de la ressource en eau sur les territoires des SAGE « Layon Aubance » et « Evre Thau Saint-Denis »

Détermination des débits d'objectif et des volumes prélevables

SIÈGE SOCIAL PARC DE L'ILE - 15/27 RUE DU PORT 92022 NANTERRE CEDEX Unité Hydraulique Fluviale

TABLE DES MATIÈRES

1 Pré	éambul	e à la détermination des débits d'objectif et des volumes prélevable	s.1
1.1	Princip	oe de détermination des débits d'objectif / volumes prélevables	1
1.2	Mode	opératoire retenu	3
	1.2.1	Définition des scénarios de prélèvement	4 It en hautes
		1.2.1.3 Pour la périodicité des méthodes de calcul1.2.1.4 Synthèse des scénarios de prélèvement retenus	
	1.2.2	Mise en œuvre de la méthode RVA	7
		euvre de la méthodologie pour le choix des scénarios de référence s	
2.1	Hyrôm	ne	12
	2.1.1	Débits moyens mensuels et valeurs caractéristiques	12
	2.1.2	Scénarios de prélèvement	13
	2.1.3	Résultats de la méthode RVA	15
2.2	Evre A	mont	22
	2.2.1	Débits moyens mensuels et valeurs caractéristiques	22
	2.2.2	Scénarios de prélèvement	23
	2.2.3	Résultats de la méthode RVA	25
2.3	Descri	ption des scénarios retenus pour le calcul des volumes prélevables	31
		volumes prélevables et définition des débits d'objectifs sur l'ensem étude	
3.1	Hypot	hèses méthodologiques retenues	33
	3.1.1	Tests sur les masses d'eau de l'Hyrôme et de l'Evre amont	33
	3.1.2	Paramètres de la méthode	34

	<mark>3.1.3</mark>	Prise en compte ou non des rejets 34	
	3.1.4	Découpage en différentes périodes	
	3.1.5	Volumes prélevables sur la période intermédiaire	
	3.1.6	Volumes prélevables en hiver	
	3.1.7	Volumes prélevables en été	
	3.1.8	Débits de référence	
3.2	Défini	tion des ensembles de masse d'eau	
3.3	Mise e	en œuvre de la méthodologie sur chaque ensemble de masse d'eau 39	
	3.3.1	Le Layon amont	
		3.3.1.1 Calcul des volumes prélevables en période hivernale	
		3.3.1.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	41
		3.3.1.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins41	
		3.3.1.4 Propositions de débit d'objectif42	
	3.3.2	L'Hyrôme	
	3.3.2	3.3.2.1 Calcul des volumes prélevables en période hivernale	
		3.3.2.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	45
		3.3.2.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins45	43
		3.3.2.4 Propositions de débit d'objectif	
	3.3.3	Le Lys	
	3.3.3	3.3.3.1 Calcul des volumes prélevables en période hivernale	
		3.3.3.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	49
		3.3.3.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins49	43
		3.3.3.4 Propositions de débit d'objectif50	
	3.3.4	Le Layon intermédiaire	
	3.3.4	3.3.4.1 Calcul des volumes prélevables en période hivernale51	
		3.3.4.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	53
		3.3.4.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins53	
		3.3.4.4 Propositions de débit d'objectif54	
	3.3.5	Le Layon aval55	
		3.3.5.1 Calcul des volumes prélevables en période hivernale	
		3.3.5.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	57
		3.3.5.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins57	
		3.3.5.4 Propositions de débit d'objectif58	
	3.3.6	L'Aubance amont	
		3.3.6.1 Calcul des volumes prélevables en période hivernale59	
		3.3.6.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	61
		3.3.6.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins61	
		3.3.6.4 Propositions de débit d'objectif62	
	3.3.7	Le Louet	

		3.3.7.1 Calcul des volumes prélevables en période hivernale63	
		3.3.7.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	65
		3.3.7.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins65	
		3.3.7.4 Propositions de débit d'objectif66	
	3.3.8	Les Moulins	
		3.3.8.1 Calcul des volumes prélevables en période hivernale67	
		3.3.8.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	69
		3.3.8.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins69	
		3.3.8.4 Propositions de débit d'objectif70	
	3.3.9	La Thau	
	3.3.3	3.3.9.1 Calcul des volumes prélevables en période hivernale	
		3.3.9.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	73
		3.3.9.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins73	, ,
		3.3.9.4 Propositions de débit d'objectif	
	2 2 40		
	3.3.10	L'Evre amont	
		3.3.10.1 Calcul des volumes prélevables en période hivernale	
		3.3.10.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	77
		3.3.10.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins77	
		3.3.10.4 Propositions de débit d'objectif78	
	3.3.11	Le Beuvron amont	
		3.3.11.1 Calcul des volumes prélevables en période hivernale79	
		3.3.11.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	81
		3.3.11.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins81	
		3.3.11.4 Propositions de débit d'objectif82	
	3.3.12	L'Evre intermédiaire 83	
		3.3.12.1 Calcul des volumes prélevables en période hivernale83	
		3.3.12.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	85
		3.3.12.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins85	
		3.3.12.4 Propositions de débit d'objectif86	
	3 3 13	L'Evre aval	
	3.3.13	3.3.13.1 Calcul des volumes prélevables en période hivernale87	
		3.3.13.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale	89
		3.3.13.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins89	03
		3.3.13.4 Propositions de débit d'objectif90	
2 4	Cara ale		
3.4	Conclu	sions	

LISTE DES FIGURES

Figure 1–1 : Schéma de principe pour le calcul du volume prélevable en période de basses eaux 2
Figure 1–2 : Schéma de principe pour le calcul du volume prélevable en période de hautes eaux 2
Figure 1–3 : Illustration du principe de la méthode RVA – Comparaison des débits médians du mois d'août entre situation de référence et scénario de prélèvement
Figure 2–1 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 1, 2 et 3 sur la masse d'eau Hyrôme
Figure 2–2 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 3, 6 et 9 sur la masse d'eau Hyrôme
Figure 2–3 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 1, 2 et 3 sur la masse d'eau Evre Amont
Figure 2–4 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 3, 6 et 9 sur la masse d'eau Evre Amont
Figure 3–1 : Définition des sous-ensembles de travail
Figure 3–2 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements su le Layon amont 40
Figure 3–3 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon amont 42
Figure 3–4 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements su l'Hyrôme 44
Figure 3–5 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Hyrôme 46
Figure 3–6 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements su le Lys 48
Figure 3–7 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Lys 50
Figure 3–8 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements su le Layon intermédiaire

Figure 3–9 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon intermédiaire
Figure 3–10 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon aval 56
Figure 3–11 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon aval 58
Figure 3–12 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Aubance amont
Figure 3–13 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Aubance amont 62
Figure 3–14 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Louet 64
Figure 3–15 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Louet 66
Figure 3–16 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur les Moulins 68
Figure 3–17 : Graphique de synthèse des débits prélevables et débits de référence proposés pour les Moulins 70
Figure 3–18 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur la Thau 72
Figure 3–19 : Graphique de synthèse des débits prélevables et débits de référence proposés pour la Thau 74
Figure 3–20 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre amont 76
Figure 3–21 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre amont 78
Figure 3–22 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Beuvron amont
Figure 3–23 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Beuvron amont 82
Figure 3–24 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre intermédiaire
Figure 3–25 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre intermédiaire

- Figure 3–26 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre aval 88
- Figure 3–27 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre aval 90
- Figure 4–1 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon amont 96
- Figure 4–2 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Hyrôme 99
- Figure 4–3 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Lys 102
- Figure 4–5 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon aval 108
- Figure 4–6 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Aubance amont 111
- Figure 4–7 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Louet 114
- Figure 4–8 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur les Moulins 117
- Figure 4–9 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur la Thau 120
- Figure 4–10 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre amont 123

- Figure 4–13 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre aval 132

LISTE DES TABLEAUX

Tableau 1-1 : Définition des scénarios de prélèvement testés dans le cadre de l'analyse 6
Tableau 1-2 : Paramètres de la méthode RVA et influences sur les écosystèmes 9
Tableau 2-1 : Débits moyens mensuels désinfluencés et valeurs caractéristiques sur l'Hyrôme 12
Tableau 2-2 : Définition des scénarios de prélèvement testés sur la masse d'eau Hyrôme. 13
Tableau 2-3 : Volumes de prélèvements associés aux scénarios testés sur la masse d'eau Hyrôme13
Tableau 2-4 : Tableau de synthèse des paramètres calculés par la méthode RVA sur la masse d'eau Hyrôme 16
Tableau 2-5 : Résumé des résultats de la méthode RVA sur la masse d'eau Hyrôme 18
Tableau 2-6 : Débits moyens mensuels désinfluencés et valeurs caractéristiques sur l'Evre Amont22
Tableau 2-7 : Définition des scénarios de prélèvement testés sur la masse d'eau Evre Amont23
Tableau 2-8 : Volumes de prélèvements associés aux scénarios testés sur la masse d'eau Evre Amont 23
Tableau 2-9 : Tableau de synthèse des paramètres calculés par la méthode RVA sur la masse d'eau Evre Amont 26
Tableau 2-10 : Résumé des résultats de la méthode RVA sur la masse d'eau Evre Amont 28
Tableau 3-1 : Volumes hivernaux prélevés – Layon amont
Tableau 3-2 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Layon Amont
Tableau 3-3 : Volumes prélevables sur le Layon Amont
Tableau 3-4 : Calcul des débits d'objectif sur le Layon amont
Tableau 3-5 : Volumes hivernaux prélevés – Hyrôme
Tableau 3-6 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Hyrôme 45
Tableau 3-7 : Volumes prélevables sur l'Hyrôme
Tableau 3-8 : Calcul des débits d'objectif sur l'Hyrôme
Tableau 3-9 : Volumes hivernaux prélevés – Lys
Tableau 3-10 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Lys 49

Tableau 3-11 : Volumes prélevables sur le Lys	
Tableau 3-12 : Calcul des débits d'objectif sur le Lys	
Tableau 3-13 : Volumes hivernaux prélevés – Layon intermédiaire	
Tableau 3-14 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estiv sur le Layon intermédiaire	ale
Tableau 3-15 : Volumes prélevables sur le Layon intermédiaire	
Tableau 3-16 : Calcul des débits d'objectif sur le Layon intermédiaire	
Tableau 3-17 : Volumes hivernaux prélevés – Layon aval	
Tableau 3-18 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estiv sur le Layon aval 57	ale
Tableau 3-19 : Volumes prélevables sur le Layon aval	
Tableau 3-20 : Calcul des débits d'objectif sur le Layon aval	
Tableau 3-21 : Volumes hivernaux prélevés – Aubance amont	
Tableau 3-22 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estiv sur l'Aubance amont	ale
Tableau 3-23 : Volumes prélevables sur l'Aubance amont	
Tableau 3-24 : Calcul des débits d'objectif sur l'Aubance amont	
Tableau 3-25 : Volumes hivernaux prélevés – Louet	
Tableau 3-26 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estiv sur le Louet 65	ale
Tableau 3-27 : Volumes prélevables sur le Louet	
Tableau 3-28 : Calcul des débits d'objectif sur le Louet	
Tableau 3-29 : Volumes hivernaux prélevés – Les Moulins	
Tableau 3-30 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estiv sur les Moulins 69	ale
Tableau 3-31 : Volumes prélevables sur les Moulins	
Tableau 3-32 : Calcul des débits d'objectif sur les Moulins	
Tableau 3-33 : Volumes hivernaux prélevés – Thau	

sur la Thau 73	eriode estivale
Tableau 3-35 : Volumes prélevables sur la Thau	. 73
Tableau 3-36 : Calcul des débits d'objectif sur la Thau	. 74
Tableau 3-37 : Volumes hivernaux prélevés – Evre amont	. 75
Tableau 3-38 : Calcul du volume de prélèvement passif par les plans d'eau maximal en pé sur l'Evre amont 77	ériode estivale
Tableau 3-39 : Volumes prélevables sur l'Evre amont	. 77
Tableau 3-40 : Calcul des débits d'objectif sur l'Evre amont	. 78
Tableau 3-41 : Volumes hivernaux prélevés – Beuvron amont	. 79
Tableau 3-42 : Calcul du volume de prélèvement passif par les plans d'eau maximal en pé sur le Beuvron amont	
Tableau 3-43 : Volumes prélevables sur le Beuvron amont	. 81
Tableau 3-44 : Calcul des débits d'objectif sur le Beuvron amont	. 82
Tableau 3-45 : Volumes hivernaux prélevés Evre intermédiaire	. 83
Tableau 3-46 : Calcul du volume de prélèvement passif par les plans d'eau maximal en pé sur l'Evre intermédiaire	
Tableau 3-47 : Volumes prélevables sur l'Evre intermédiaire	. 85
Tableau 3-48 : Calcul des débits d'objectif sur l'Evre intermédiaire	. 86
Tableau 3-49 : Volumes hivernaux prélevés – Evre aval	. 87
Tableau 3-50 : Calcul du volume de prélèvement passif par les plans d'eau maximal en pé sur l'Evre aval 89	ériode estivale
Tableau 3-51 : Volumes prélevables sur l'Evre aval	. 89
Tableau 3-52 : Calcul des débits d'objectif sur l'Evre aval	. 90
Tableau 3-53 : Bilan annuel des volumes prélevables proposés et des besoins historiques différents sous-ensembles de masses d'eau de travail	
Tableau 4-1 : Comparaison des volumes hivernaux prélevés – Layon amont	. 95
Tableau 4-2 : Comparaison des volumes prélevables en hiver – Layon amont	. 96
Tableau 4-3 : Comparaison des volumes prélevables sur le Layon Amont	. 97

Tableau 4-4 : Comparaison des volumes hivernaux prélevés – Hyrôme
Tableau 4-5 : Comparaison des volumes prélevables en hiver – Hyrôme99
Tableau 4-6 : Comparaison des volumes prélevables sur l'Hyrôme 100
Tableau 4-7 : Comparaison des volumes hivernaux prélevés – Lys 101
Tableau 4-8 : Comparaison des volumes prélevables en hiver – Lys 102
Tableau 4-9 : Comparaison des volumes prélevables sur le Layon Amont 103
Tableau 4-10 : Comparaison des volumes hivernaux prélevés – Layon intermédiaire 104
Tableau 4-11 : Comparaison des volumes prélevables en hiver – Layon intermédiaire 105
Tableau 4-12 : Comparaison des volumes prélevables sur le Layon intermédiaire 106
Tableau 4-13 : Comparaison des volumes hivernaux prélevés – Layon aval 107
Tableau 4-14 : Comparaison des volumes prélevables en hiver – Layon aval 108
Tableau 4-15 : Comparaison des volumes prélevables sur le Layon aval 109
Tableau 4-16: Comparaison des volumes hivernaux prélevés – Aubance amont 110
Tableau 4-17 : Comparaison des volumes prélevables en hiver – Aubance amont 111
Tableau 4-18 : Comparaison des volumes prélevables sur l'Aubance amont 112
Tableau 4-19 : Comparaison des volumes hivernaux prélevés – Louet 113
Tableau 4-20 : Comparaison des volumes prélevables en hiver – Louet 114
Tableau 4-21 : Comparaison des volumes prélevables sur le Layon Amont
Tableau 4-22 : Comparaison des volumes hivernaux prélevés – Les Moulins 116
Tableau 4-23 : Comparaison des volumes prélevables en hiver – Les Moulins 117
Tableau 4-24 : Comparaison des volumes prélevables sur les Moulins
Tableau 4-25 : Comparaison des volumes hivernaux prélevés – Thau 119
Tableau 4-26 : Comparaison des volumes prélevables en hiver – La Thau 120
Tableau 4-27 : Comparaison des volumes prélevables sur la Thau
Tableau 4-28 : Comparaison des volumes hivernaux prélevés – Evre amont 122
Tableau 4-29: Comparaison des volumes prélevables en hiver – Evre amont 123

Tableau 4-30 : Comparaison des volumes prélevables sur l'Evre Amont 124	
Tableau 4-31 : Comparaison des volumes hivernaux prélevés – Beuvron amont 125	
Tableau 4-32 : Comparaison des volumes prélevables en hiver – Beuvron amont 126	
Tableau 4-33 : Comparaison des volumes prélevables sur le Beuvron Amont 127	
Tableau 4-34 : Comparaison des volumes hivernaux prélevés – Evre intermédiaire 128	
Tableau 4-35 : Comparaison des volumes prélevables en hiver – Evre intermédiaire 129	
Tableau 4-36 : Comparaison des volumes prélevables sur l'Evre intermédiaire 130	
Tableau 4-37 : Comparaison des volumes hivernaux prélevés – Evre aval 131	
Tableau 4-38 : Comparaison des volumes prélevables en hiver – Evre aval 132	
Tableau 4-39 : Comparaison des volumes prélevables sur l'Evre aval	
Tableau 4-40 : Bilan annuel des volumes prélevables proposés et des besoins historiques sur différents sous-ensembles de masses d'eau de travail	les

1

Préambule à la détermination des débits d'objectif et des volumes prélevables

1.1 Principe de détermination des débits d'objectif / volumes prélevables

La présente étude vise à définir, pour l'ensemble du cycle hydrologique, des valeurs de débits d'objectif et de volumes prélevables à l'échelle des différentes masses d'eau de la zone d'étude. La définition de ces éléments doit donc s'appliquer sur l'ensemble de l'année, a contrario des approches généralement mises en œuvre actuellement qui se consacrent principalement à la période d'étiage.

Il est reconnu que les besoins des milieux naturels (base de détermination des débits d'objectif et des volumes prélevables) sont variables selon les périodes de l'année. Les modalités de définition des volumes prélevables et des débits d'objectif associés fluctuent donc suivant la période de l'année considérée.

En période de basses eaux, on vise préférentiellement à maintenir un débit minimum en rivière (débit biologique). Ce débit doit garantir la vie biologique dans des conditions structurellement plus délicates (notamment baisse de la pluviométrie). En ce sens, le maintien d'un débit biologique passe plutôt par le maintien d'un débit « plancher », au-dessous duquel les conditions biologiques sont altérées, sans toutefois conduire à remettre en cause la survie des espèces en présence, notamment piscicoles. Le principe de détermination envisagé peut être résumé sur la Figure 1–1.

En période de hautes eaux, en revanche, les apports en eau sont naturellement plus abondants et variables, structurant ainsi différemment les besoins des espèces présentes. Un débit seuil doit permettre, entre autres, la remise en eau d'annexes hydrauliques lorsqu'elles existent, la mobilité des espèces sur un cours d'eau, l'oxygénation des milieux. En parallèle, le maintien de variations de débits significatives peut favoriser la fonctionnalité de frayères, mais aussi garantir une certaine dynamique morphogène sur les cours d'eau, ou encore limiter le colmatage des cours d'eau en favorisant la remise en suspension des particules fines (chasses naturelles). A ce titre, il convient de maintenir un débit minimum en cours d'eau (débit plancher de hautes eaux), mais aussi un débit maximal au-delà duquel le prélèvement ne peut être autorisé afin d'assurer les variations de débits évoquées ci-dessus. Le principe de détermination envisagé peut être résumé sur la Figure 1–2.

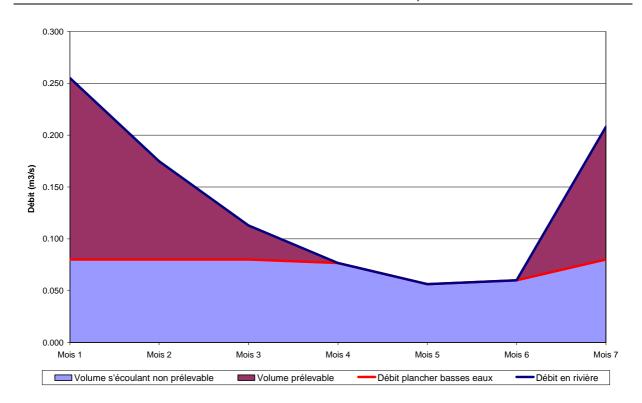


Figure 1-1: Schéma de principe pour le calcul du volume prélevable en période de basses eaux

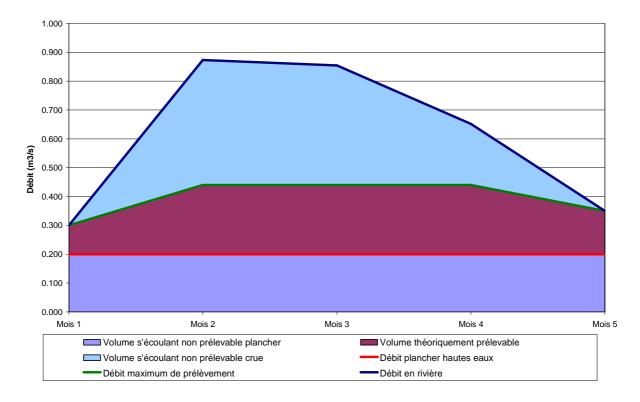


Figure 1-2 : Schéma de principe pour le calcul du volume prélevable en période de hautes eaux

Pour la détermination du volume prélevable sur l'ensemble du cycle hydrologique, plusieurs variables nécessitent d'être définies pour chaque masse d'eau de la zone d'étude. Il s'agit :

- Du débit plancher de basses eaux ;
- Du débit plancher de hautes eaux ;
- De débit maximum de prélèvement en hautes eaux ;
- De(s) période(s) sur lesquelles doivent s'appliquer l'une ou l'autre des méthodes de calcul présentées ci-dessus (période de basses eaux/hautes eaux).

Le raisonnement méthodologique mis en œuvre pour la définition de ces différentes variables est présenté ci-après.

1.2 Mode opératoire retenu

Le présent rapport s'inscrit dans la continuité d'une note méthodologique remise aux membres d'un groupe technique restreint (émanation du comité de pilotage) en décembre 2013, note discutée lors d'une réunion en janvier 2014. Par la suite, un premier rendu des résultats sur les bassins dits « tests » de la zone d'étude a été retenu en réunion du groupe technique le 7 juillet 2014. Le présent rapport expose dans un premier temps les résultats des ajustements méthodologiques réalisés à l'issue de cette réunion. Dans un second temps, il fait état des résultats obtenus par la généralisation de cette méthode à l'ensemble des masses d'eau étudiées.

Lors de cette dernière réunion, le cheminement méthodologique a été clairement arrêté pour être mis en œuvre sur deux masses d'eau de la zone d'étude, une pour chaque territoire de SAGE : il s'agit de l'Hyrôme pour le SAGE Layon-Aubance et de l'Evre Amont pour le SAGE Evre Thau Saint-Denis. Il a été retenu de tester le mode opératoire décrit ci-après sur ces deux masses d'eau afin de définir un scénario de calcul des volumes prélevables et débits d'objectif robuste et pertinent, puis de dérouler ce scénario sur l'ensemble des autres masses d'eau de la zone d'étude.

Le mode opératoire défini pour le calcul des débits d'objectif et volumes prélevables s'articule autour des étapes suivantes :

- Détermination du régime d'écoulement naturel des cours d'eau pour la période de référence retenue dans le cadre de la phase 1 (2000-2010, soit 11 ans de données) : dans le cadre de la phase 1 de l'étude, des chroniques de débits désinfluencés des prélèvements ont été générées à l'aide d'un modèle pluie-débit au pas de temps journalier pour chaque masse d'eau de la zone d'étude ;
- Définition de scénarios de prélèvement à tester : il s'agit ici de proposer des valeurs seuils pour chaque paramètre évoqué plus haut (débits planchers, débit maximum de prélèvement en hautes eaux, périodicité pour la méthode de calcul) : les scénarios testés sont présentés plus loin dans le rapport ;
- Construction de chroniques de prélèvements « fictives » à partir des chroniques de débits désinfluencés des prélèvements issues de la phase 1 et des scénarios (valeurs seuils) évoqués ci-dessus;

- Implémentation de ces chroniques dans le modèle pluie-débit construit en phase 1 de l'étude, et simulation des écoulements résultant de ces prélèvements pour chaque scénario testé sur la période de référence (2000-2010);
- Comparaison des chroniques ainsi générées avec la chronique de débits désinfluencés via une méthode d'analyse des altérations hydrologiques (méthode du Range Value Analysis, ou RVA, présentée plus loin dans le rapport);
- Proposition de sélection des scénarios les plus pertinents ;
- Définition des volumes prélevables et débits d'objectif associés à ces scénarios, puis analyse des volumes prélevables définis par les différents scénarios au regard de la satisfaction des besoins 8 années sur 10.

1.2.1 Définition des scénarios de prélèvement

Comme évoqué plus haut, la définition des scénarios de prélèvement à tester vise à définir différentes variables seuils au-delà/en-deçà desquelles les prélèvements peuvent être assurés ou, au contraire, doivent être proscrits en fonction des périodes de l'année.

La définition de ces valeurs seuils s'est basée sur un consensus du groupe technique, lui-même s'appuyant sur le retour d'expérience de chacun, sur les seuils réglementaires en vigueur, et sur les travaux en cours à l'échelle du bassin Loire Bretagne (associant notamment la DREAL de bassin, l'Agence de l'Eau et l'ONEMA).

1.2.1.1 Pour la définition du débit plancher de basses eaux

Une première approche proposée par SAFEGE pour la détermination du débit plancher de basses eaux reposait sur la recherche de corrélation entre les observations d'écoulement réalisées par l'ONEMA (réseau ROCA devenu ONDE en 2011) en différents points de la zone d'étude et des débits s'écoulant au droit des stations hydrométriques de la Banque Hydro. Outre le fait que ces observations sont discontinues dans le temps (pendant plusieurs années, les observations étaient déclenchées uniquement sur demande du Préfet en situation de tension avérée sur la ressource), elles ne couvrent pas l'ensemble des masses d'eau du territoire. De la même manière, la disponibilité de chroniques hydrométriques est limitée en regard du nombre de masses d'eau à considérer. Cette approche se révèle donc difficile à systématiser sur l'ensemble de la zone d'étude, mais a tout de même été mise en œuvre sur les quelques masses d'eau où les données d'observations sur les écoulements et des données hydrométriques étaient disponibles. Sur ces masses d'eau, il était difficile de conclure sur une valeur précise de débit plancher à retenir. Pour plusieurs masses d'eau, la fourchette de valeurs s'établissait autour du 1/10^e du module.

Compte tenu de la portée réglementaire de cette valeur depuis janvier 2014 (débit plancher à garantir à l'aval de tout ouvrage en cours d'eau (article L214-18 du code de l'environnement)), il a été retenu en groupe technique restreint de l'utiliser comme débit plancher en période de basses eaux. A ce stade de l'étude, il a été retenu que cette valeur soit consolidée (confirmée) dans l'avenir par des observations des écoulements en cours d'eau en période d'étiage. Elle constitue cependant la valeur retenue pour définir le débit plancher en période de basses eaux dans le cadre de notre analyse.

1.2.1.2 Pour la définition du débit plancher et du débit maximum de prélèvement en hautes eaux basses eaux

Peu de données sont disponibles en France ou à l'étranger quant aux valeurs pertinentes à retenir pour cadrer les prélèvements en période de hautes eaux. Les contacts pris avec l'IRSTEA et l'ONEMA dans le cadre de notre étude ont confirmé cet aspect. L'importance de valoriser des facteurs locaux dans le choix de ces valeurs est soulignée, mais les discussions menées en groupe technique sur le sujet n'ont pas permis de faire ressortir une base claire pour déterminer ces valeurs.

Cependant, dans le cadre de la rédaction du SDAGE 2016-2021, des réflexions sont en cours pour fixer des règles de prélèvement à l'échelle du bassin Loire-Bretagne. A ce stade, il semble que les règles de bornage des volumes prélevables en hautes eaux sur le bassin s'orientent vers les valeurs suivantes :

- Fixer le débit plancher de prélèvement de hautes eaux au module du cours d'eau;
- Autoriser par défaut les prélèvements à hauteur d'un volume égal à 20 % du module;
- Autoriser les prélèvements à hauteur d'un volume égal à 40 % du module sur les territoires où des investigations auraient permis de démontrer l'impact limité de ce volume de prélèvement sur les écoulements/milieux naturels;
- L'opportunité d'envisager les prélèvements à hauteur d'un volume égal à 60% du module a également été envisagée dans la période de rédaction du SDAGE, mais a été abandonnée dans le projet de SDAGE soumis à consultation.

Ainsi, pour un cours d'eau dont le module serait de 1 m³/s, le débit maximum de prélèvement autorisé serait de 1,2 m³/s, voire 1,4 m³/s, avec des débits prélevables associés de respectivement 200 et 400 l/s. Ces éléments restent toutefois à relativiser dans la mesure où aucune validation/formalisation de ces seuils n'a pour le moment été réalisée. A ce titre, ils doivent être considérés dans le cadre de la présente étude comme une piste de travail, et non pas comme des valeurs actées.

Compte tenu de l'absence de données contradictoires sur le sujet, le groupe technique a validé l'opportunité d'utiliser le module comme débit plancher de hautes eaux. Pour le débit maximum de prélèvement en période de hautes eaux, il a été retenu de tester 3 scénarios conformes ou s'approchant de la « doctrine » en cours de discussion à l'échelle Loire-Bretagne, à savoir 1,2*module et 1,4*module. Le scénario avec un débit maximum de prélèvement à 1,6*module, bien que non retenu dans le projet de SDAGE actuel a également été testé.

1.2.1.3 Pour la périodicité des méthodes de calcul

Le découpage de l'année en plusieurs périodes sur lesquelles s'appliquent l'une ou l'autre des méthodes de calcul des volumes prélevables n'est pas anodin. En effet, ce volume peut sensiblement varier suivant que l'on fixe un débit plancher de prélèvement estival (pour mémoire, égal au 1/10^e du module) ou un seuil de prélèvement hivernal (égal au module). Sur la base des discussions tenues en groupe technique restreint, le découpage suivant a été retenu :

 De juin à octobre : utilisation de la méthode définie en période de basses eaux pour le calcul des volumes prélevables ;

- De décembre à mars : utilisation de la méthode définie en période de hautes eaux pour le calcul des volumes prélevables ;
- Pour les autres périodes (mois de mai, juin et novembre) : le choix de la méthode à retenir est difficile car la possibilité de prélever ou non sur ces périodes est intimement liée au contexte hydrologique annuel (par exemple, un étiage tardif peu se prolonger jusqu'en novembre, alors que certaines années un contexte pluvieux conduit à des débits élevés (et donc propices aux prélèvements) pour ce même mois). Afin de tenir compte de cette variabilité dans le contexte, il a été décidé de tester 3 scénarios pour la méthode de calcul à utiliser pour cette période :
 - o Calcul du volume prélevable selon la méthode retenue en basses eaux ;
 - o Calcul du volume prélevable selon la méthode retenue en hautes eaux ;
 - o Calcul du volume prélevable par moyenne des deux scénarios ci-dessus.

1.2.1.4 Synthèse des scénarios de prélèvement retenus

Sur la base des éléments décrits ci-dessus, les scénarios décrits dans le tableau ci-dessous ont donc été testés.

Tableau 1-1: Définition des scénarios de prélèvement testés dans le cadre de l'analyse

Nom du scénario	Période basses eaux	Débit plancher basses eaux	Période hautes eaux	Débit plancher hautes eaux	Débit maximum hautes eaux	Volume prélevable mai / juin / novembre
Scénario 1	Avril à novembre	1/10 ^e module	Décembre à mars	Module	1,2 * module	/
Scénario 2	Avril à novembre	1/10e module	Décembre à mars	Module	1,4 * module	/
Scénario 3	Avril à novembre	1/10e module	Décembre à mars	Module	1,6 * module	/
Scénario 4	Juin à octobre	1/10e module	Novembre à mai	Module	1,2 * module	/
Scénario 5	Juin à octobre	1/10e module	Novembre à mai	Module	1,4 * module	/
Scénario 6	Juin à octobre	1/10e module	Novembre à mai	Module	1,6 * module	1
Scénario 7	Juin à octobre	1/10e module	Décembre à mars	Module	1,2 * module	Moyenne Scénarios 1 et 4
Scénario 8	Juin à octobre	1/10e module	Décembre à mars	Module	1,4 * module	Moyenne Scénarios 2 et 5
Scénario 9	Juin à octobre	1/10e module	Décembre à mars	Module	1,6 * module	Moyenne Scénarios 3 et 6

1.2.2 Mise en œuvre de la méthode RVA

1.2.2.1 Principe de la méthode RVA et paramètres analysés

La méthode RVA vise à analyser l'altération d'un certain nombre de paramètres/indicateurs caractéristiques d'un régime hydrologique entre une situation dite « de référence » (c'est-à-dire peu ou pas influencée par l'action anthropique) et un régime tenant compte de pressions.

L'utilisation de paramètres hydrologiques comme témoins de l'altération des conditions du milieu a été développée par Poff et al. à la fin des années 1990. Ils établissent un principe selon lequel le respect de la plage complète de variations inter-annuelles et intra-annuelles du régime hydrologique (caractérisé par la magnitude, la saisonnalité, la durée, la fréquence et le taux de variation) est critique pour le maintien de la biodiversité naturelle et la préservation des écosystèmes aquatiques.

Par la suite, Richter et. al. ont développé une méthode formalisant ce principe, notamment en sélectionnant un panel d'indicateurs hydrologiques permettant de caractériser au mieux la magnitude, la saisonnalité, la durée, la fréquence et le taux de variation d'un régime hydrologique. Cette méthode est celle du Range Value Analysis (RVA). Les indicateurs promus par la méthode RVA sont au nombre de 32, et sont présentés ci-dessous. Une fois le régime d'écoulement de référence caractérisé (écoulement naturel), il est donc possible de comparer des régimes d'écoulement « modifiés » via le spectre de ces indicateurs hydrologiques. Les régimes d'écoulement modifiés correspondent à différents scénarios de prélèvements émanant des différentes valeurs pour les seuils évoqués précédemment.

En pratique, la méthode RVA permet de mesurer la distribution des valeurs d'un paramètre pour n années pour un régime de référence (en l'occurrence, désinfluencé des prélèvements et rejets dans le cadre de notre analyse). En fonction de cette distribution, des valeurs seuils (RVA boundaries) sont définies pour partager l'échantillon en 3 catégories. L'analyse d'altération pour un paramètre donné se fait donc en vérifiant la distribution des valeurs issues d'un scénario de prélèvement donné.

La figure ci-dessous permet d'illustrer le principe de la méthode. Sur le graphique de gauche sont représentées les valeurs du débit médian du mois d'août sur la période 2000-2010 issues de la chronique de débits désinfluencés (chronique de référence). En fonction de cette distribution sont positionnées les valeurs seuils permettant de juger de l'altération de ce paramètre (RVA High & Low boundaries). Sur le graphique de droite sont représentées les valeurs de débit médian du mois d'août sur la période 2000-2010 issues de la chronique de débits générés pour le scénario de prélèvement 4 décrit précédemment. A la lecture du graphique, il apparaît clair que l'altération pour ce paramètre est forte pour le scénario 4, aucune valeur ne tombant dans la zone médiane en régime influencé, alors qu'il y en avait 5 en régime désinfluencé.

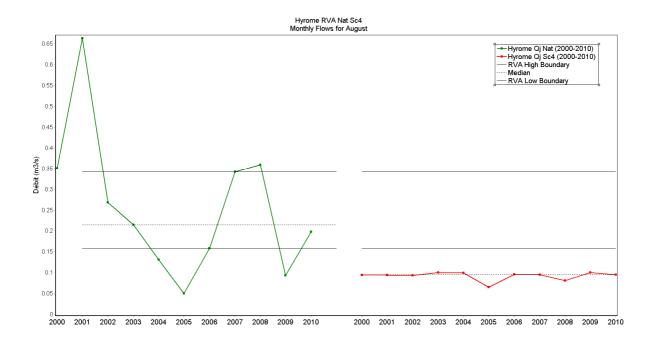


Figure 1–3 : Illustration du principe de la méthode RVA – Comparaison des débits médians du mois d'août entre situation de référence et scénario de prélèvement

Sur le même principe, l'analyse est menée, pour chaque scénario de prélèvement, sur une base de 32 paramètres caractéristiques du régime hydrologique. Ces paramètres sont listés dans le tableau cidessous, avec des exemples de l'influence de ceux-ci sur différents compartiments des écosystèmes¹.

¹ Tableau tiré de la notice d'utilisation du logiciel IHA permettant la mise en œuvre de la méthode RVA (The Nature Conservancy (2009) : Indicators of Hyrologic Alteration – Version 7.1 – User's manual. April 2009)

Tableau 1-2 : Paramètres de la méthode RVA et influences sur les écosystèmes

Groupes d'indicateurs	Caractéristiques du régime	Indicateurs hydrologiques utilisés pour l'analyse d'altération hydrologique	Exemples d'influence sur l'écosystème	
Groupe 1 : Magnitude de l'écoulement mensuel - Saisonnalité		- Débit médian pour chaque mois (12 paramètres)	 Habitat disponible pour les organismes aquatiques Humidité du sol disponible pour la végétation Disponibilité de l'eau pour les animaux terrestres Accès des prédateurs aux zones de nidification Fiabilité de l'approvisionnement en eau pour les animaux terrestres Influence la température de l'eau, les taux d'oxygène, la photosynthèse dans la colonne d'eau 	
Groupe 2 : Magnitude et durée des conditions extrêmes chaque mois	- Magnitude - Durée	 Minimum annuel de la moyenne journalière Maximum annuel de la moyenne journalière Minimum annuel de la moyenne sur 3 jours Maximum annuel de la moyenne sur 3 jours Minimum annuel de la moyenne sur 7 jours Maximum annuel de la moyenne sur 7 jours Minimum annuel de la moyenne sur 30 jours Maximum annuel de la moyenne sur 30 jours Minimum annuel de la moyenne sur 90 jours Maximum annuel de la moyenne sur 90 jours Nombre jours avec débit = 0 (11 paramètres) 	 Régulation des organismes compétitifs et tolérants aux stress Création de sites pour favoriser la colonisation par les plantes Structuration des écosystèmes aquatiques par équilibre dynamique entre facteurs biotiques et abiotiques Structuration de la morphologie des cours d'eau et des conditions physiques de l'habitat Stress hydrique pour la végétation Stress anaérobique pour la végétation Déshydratation pour les espèces animales Volume d'échange de nutriments entre le cours d'eau et le lit majeur Durée des conditions de stress (faible oxygénation, concentration élevée en éléments chimiques,) pour l'environnement aquatique Importance du développement végétal dans les lacs, les étangs, le lit majeur, Durée des hautes eaux permettant le « nettoyage » des cours d'eau, le decolmatage des frayères, 	
Groupe 3 : Saisonnalité des conditions extrêmes annuelles des écoulements	- Saisonnalité	- Date du calendrier associée au débit journalier maximal de l'année - Date du calendrier associée au débit journalier minimal de l'année (2 paramètres)	- Compatibilité des max/min annuels avec les cycles des organismes aquatiques - Probabilité/évitement de conditions de stress pour les organismes - Accès à des habitats spécifiques (pour la reproduction ou échapper aux prédateurs) - Déclenchement de la ponte pour les espèces migratrices - Évolution des mécanismes comportementaux	
Groupe 4 : Fréquence et durée des « pics » et des « creux » de débit ²	- Fréquence - Durée	- Nombre de pics de débit par an - Nombre de creux de débit par an - Durée moyenne des pics sur un an (en jours) - Durée moyenne des creux sur un an (en jours) (4 paramètres)	 Fréquence et magnitude des conditions de stress hydrique pour les plantes Fréquence et durée des conditions de stress anaérobique pour la végétation Disponibilité des habitats du lit majeur pour les organismes aquatiques Échanges de nutriments et de matière organique entre la rivière et le lit majeur Disponibilité des minéraux du sol Accès des oiseaux d'eau aux zones de d'alimentation, de repos, de reproduction Influences sur le transport solide, la texture des sédiments du lit et la durée/fréquence des perturbations du substrat dans le lit mineur 	
Groupe 5 : Taux de variation et fréquence des changements d'écoulement	- Fréquence - Taux de variation	 Moyenne de toutes les différences positives entre deux débits journaliers consécutifs (débits augmentant) Moyenne de toutes les différences négatives entre deux débits journaliers consécutifs (débits baissant) Nombre de changements de pente de l'hydrogramme (3 paramètres) 	 Stress hydrique (sécheresse) (débits baissant) Piégeage d'organismes terrestres sur des iles ou dans la zone inondable (débit augmentant) Piégeage d'organismes aquatiques sur des iles ou dans la zone inondable (débit baissant) Piégeage et déshydratation des espèces de berge à faible mobilité (débit baissant) 	

² Les « pics » et « creux » de débit correspondent, par défaut, aux périodes durant lesquelles le débit journalier reste supérieur (respectivement inférieur) au débit classé de fréquence de dépassement 25% (respectivement 75%), mais peuvent faire l'objet d'ajustements en fonction du contexte local : les modalités d'ajustement de ces seuils sont décrites ci-après.

Dans le cadre de la présente analyse, il a été décidé d'écarter certains paramètres de l'analyse, à savoir les paramètres du groupe 3 (dates d'obtention du débit minimum et du débit maximum chaque année). Ce choix est motivé par le fait que la sensibilité du modèle pluie-débit valorisé pour simuler les chroniques de prélèvements construites pour les différents scénarios n'est pas jugée suffisamment bonne pour bien mesurer ces paramètres de façon robuste.

Comme évoqué sur la page précédente, les valeurs seuils permettant de définir les « pics » et « creux » de débits (groupe 4 des paramètres de la méthode RVA) ont été ajustées dans le cadre de la présente analyse. Cet ajustement s'est fait sur la base d'un consensus au sein du groupe technique restreint. Il a été convenu de fixer :

- Le seuil de définition d'un « creux » au 1/5e du module ;
- Le seuil de définition d'un « pic » à 2,5*module.

Les tests de sensibilité menés dans le cadre de l'analyse RVA ont montré que ces seuils étaient suffisamment sensibles pour varier de manière pertinente en fonction des différents scénarios modélisés.

1.2.2.2 Analyse de l'altération hydrologique

L'analyse des altérations hydrologiques a été réalisée en utilisant la méthodologie RVA dans le logiciel IHA (Indicators of Hydrologic Alterations), développé par l'ONG The Nature Conservancy. L'analyse a été menée sur des statistiques non-paramétriques (raisonnement sur les valeurs de percentiles en lieu et place d'une analyse sur les écart-types).

Concernant les seuils d'altération (high et low RVA boundaries évoquées plus haut), ils ont été positionnés au 17% percentile de part et d'autres de la valeur médiane pour chaque paramètre (ce qui revient à découper l'échantillon en 3 classes de taille égale : 0-33%, 34-67%, 68-100%).

Pour quantifier l'altération, on a utilisé le degré d'altération hydrologique D défini par Shiau & Wu (2004) :

$$D = \left(\frac{N_o - N_e}{N_e}\right) \times 100\%$$

Avec:

Ne : le nombre d'années pour lesquelles la valeur du paramètre hydrologique issue de la chronique de référence est incluse dans l'intervalle RVA (matérialisée par les high and low boundary évoquées plus haut)

No : le nombre d'années pour lesquelles la valeur du paramètre hydrologique du scénario de prélèvement est incluse dans l'intervalle RVA

Ainsi, selon l'exemple présenté sur la Figure 1–3, le degré d'altération serait de -100% : sur 5 valeurs attendues dans l'intervalle RVA (Ne = 5), 0 ont été observées (No=0). A noter qu'une altération positive signifie qu'un plus grand nombre de valeurs qu'attendu se retrouve dans l'intervalle RVA, alors que pour une altération négative, un nombre plus faible de valeur qu'attendu se retrouve dans l'intervalle RVA.

Pour classer le degré d'altération par paramètre, on s'est basé sur la méthodologie proposée par Richter et. al. (1998), à savoir la classification du degré d'altération en 3 catégories :

- Altération faible pour D compris entre 0 et 33%
- Altération moyenne pour D compris entre 34 et 67%
- Altération forte pour D supérieur à 67%.

Toujours sur la base de la Figure 1–3, l'altération est donc considérée forte car égale à 100% (>67%).

Par la suite, une altération globale pour un scénario donné a pu être calculée selon la méthodologie proposée par Shiau && Wu (2004) :

- Altération globale faible : le degré d'altération pour l'ensemble des paramètres d'altération appartient à une altération faible
- Altération globale moyenne : le degré d'altération d'au moins un paramètre est classé comme moyen, mais aucun comme fort
- Altération globale forte : le degré d'altération d'au moins un paramètre est classé comme fort.

Il convient de rappeler que, si les chroniques de prélèvement (et les débits en rivière en résultant) sont étudiées sur l'ensemble du cycle hydrologique dans le cadre de l'analyse RVA, les résultats fournis sont principalement utilisés pour se positionner sur les valeurs seuils définies en période de hautes eaux et sur la définition des volumes prélevables sur les périodes intermédiaires (avril, mai et novembre). Les résultats relatifs aux périodes de basses eaux feront l'objet d'une analyse succincte mais ne doivent pas remettre en cause, à ce stade, la valeur de débit plancher définie pour cette période. A ce titre, les résultats de l'analyse de l'altération globale doivent être pris avec précaution, l'analyse paramètre par paramètre étant à privilégier.

A l'issue de l'analyse RVA, une proposition de scénario à conserver est faite : le(s) scénario(s) retenu(s) fait alors l'objet d'une analyse complémentaire visant à :

- Calculer les volumes prélevables
- Comparer ces volumes aux besoins actuels identifiés ;
- Calculer les débits d'objectif associés aux volumes prélevables.

2

Mise en œuvre de la méthodologie pour le choix des scénarios de référence sur les masses d'eau tests

2.1 Hyrôme

2.1.1 Débits moyens mensuels et valeurs caractéristiques

Les débits moyens mensuels désinfluencés et les valeurs caractéristiques associées sont présentés cidessous.

F M Α M Α S 0 D (m3/s)1.066 | 0.976 | 0.578 0.511 0.354 0.276 0.582 2.104 | 3.349 2000 2.827 | 2.487 1.511 2001 5.148 3.738 3.551 2.460 1.856 0.949 0.778 0.654 0.453 0.641 0.611 0.607 0.272 | 0.280 | 0.450 | 0.638 2002 0.825 | 1.459 1.644 0.981 0.630 0.417 2.132 2.796 2003 3.124 2.355 1.170 0.745 0.534 0.393 0.273 0.216 0.153 0.205 0.776 1.233 2004 3.055 1.817 1.195 0.754 0.489 0.317 0.205 0.132 0.086 0.222 0.346 0.397 2005 0.680 0.572 0.377 0.244 0.172 0.119 0.078 0.050 0.033 0.037 0.281 0.507 0.588 2006 0.697 0.819 1.270 0.949 0.381 0.247 0.160 0.237 0.509 0.822 2.156 2007 2.481 2.525 2.747 1.185 0.860 0.615 0.470 0.345 0.250 0.162 0.149 0.426 0.823 | 1.290 1.012 0.937 0.825 0.852 0.553 0.362 0.237 0.174 0.530 2008 0.643 2009 0.820 1.110 0.702 0.453 0.294 0.215 0.146 0.094 0.063 0.050 0.370 1.819 2010 1.974 1.450 1.238 0.717 0.472 0.310 0.200 0.129 0.092 0.218 2.381 0.668 Module 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 QMNA5 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 Débit mensuel 2.078 1.831 1.512 1.001 0.483 0.349 0.259 0.215 0.301 0.758 0.722 1.328 moyen $(QM_{0.5})$ Débit mensuel 1.321 1.351 1.037 0.703 0.488 0.350 0.241 0.170 0.140 0.175 0.388 0.779 7/10 (QM_{0.3}) Débit mensuel 0.862 1.060 0.751 0.523 0.347 0.270 0.176 0.117 0.095 0.099 0.164 0.447 8/10 (QM_{0.2})

Tableau 2-1: Débits moyens mensuels désinfluencés et valeurs caractéristiques sur l'Hyrôme

2.1.2 Scénarios de prélèvement

Sur la base des scénarios de prélèvements définis précédemment et des valeurs caractéristiques définies précédemment, les scénarios sur la masse d'eau Hyrôme ont été construits avec les valeurs seuils suivantes.

Tableau 2-2 : Définition des scénarios de prélèvement testés sur la masse d'eau Hyrôme

Nom du scénario	Période basses eaux	Débit plancher basses eaux (m³/s)	Période hautes eaux	Débit plancher hautes eaux (m³/s)	Débit max hautes eaux (m³/s)	Volume prélevable mai / juin / novembre
Scénario 1	Avril à novembre	0.09	Décembre à mars	0.9	1.08	/
Scénario 2	Avril à novembre	0.09	Décembre à mars	0.9	1.26	/
Scénario 3	Avril à novembre	0.09	Décembre à mars	0.9	1.44	/
Scénario 4	Juin à octobre	0.09	Novembre à mai	0.9	1.08	/
Scénario 5	Juin à octobre	0.09	Novembre à mai	0.9	1.26	/
Scénario 6	Juin à octobre	0.09	Novembre à mai	0.9	1.44	/
Scénario 7	Juin à octobre	0.09	Décembre à mars	0.9	1.08	Moyenne Scénarios 1 et 4
Scénario 8	Juin à octobre	0.09	Décembre à mars	0.9	1.26	Moyenne Scénarios 2 et 5
Scénario 9	Juin à octobre	0.09	Décembre à mars	0.9	1.44	Moyenne Scénarios 3 et 6

Les volumes moyens de prélèvement par scénario sur la période considérée (2000-2010) sont comparés avec les volumes moyens prélevés historiquement sur la même période.

Tableau 2-3 : Volumes de prélèvements associés aux scénarios testés sur la masse d'eau Hyrôme

Volumes prélevés (*10 ³ m ³)	J	F	M	Α	М	J	J	Α	s	0	N	D	тот
Scénario 1	482	439	482	2361	1692	1017	695	452	324	565	1732	482	10 725
Scénario 2	964	879	964	2361	1692	1017	695	452	324	565	1732	964	12 610
Scénario 3	1446	1318	1446	2361	1692	1017	695	452	324	565	1732	1145	14 195
Scénario 4	482	439	482	262	0	1017	695	452	324	565	0	482	5 201
Scénario 5	964	879	964	262	0	1017	695	452	324	565	0	964	7 086
Scénario 6	1446	1318	1446	262	0	1017	695	452	324	565	0	1145	8 671
Scénario 7	482	439	482	1364	920	1017	695	452	324	565	1003	482	8 227
Scénario 8	964	879	964	1364	920	1017	695	452	324	565	1003	964	10 112
Scénario 9	1446	1318	1446	1364	920	1017	695	452	324	565	1003	1145	11 697
Volumes moyens historiques	236	215	236	17	35	209	246	108	41	236	228	236	2 043

Unité Hydraulique Fluviale

Il ressort de ce tableau qu'en moyenne, les volumes de prélèvement issus des scénarios étudiés aboutissent à des valeurs plus importantes que les volumes historiquement prélevés en volume annuel. Concernant les volumes mensuels, ils sont généralement plus importants dans les scénarios étudiés que les volumes historiques, hormis pour les mois de mai et novembre pour les scénarios 4 à 6. Pour mémoire, ces scénarios considèrent un seuil de prélèvement pour ces mois égal au module du cours d'eau.

Les différences entre les scénarios de prélèvements proposés sont soulignées par les graphiques cidessous. Le premier compare les volumes prélevables mensuels moyens pour les scénarios 1 à 3 (périodicité équivalente mais seuil maximum de prélèvement en hautes eaux différent), alors que le suivant compare ces volumes pour les scénarios 3, 6 et 9 (même seuil maximum de prélèvement en hautes eaux, mais stratégie différente pour les prélèvements sur les périodes dites intermédiaires).

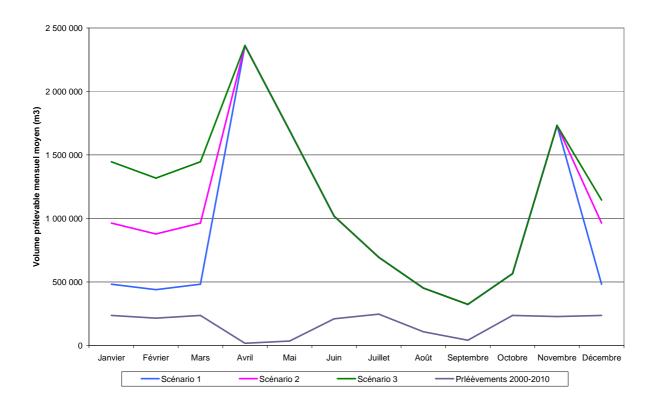


Figure 2–1 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 1, 2 et 3 sur la masse d'eau Hyrôme

Le graphique ci-dessus fait apparaître les disparités de volumes de prélèvement suivant les seuils de calcul retenus en période de hautes eaux. Il apparaît clair à la lecture de ce graphique que la prise en compte d'une méthode de calcul estivale (débit plancher égal au 1/10^e du module) sur les périodes intermédiaires (avril, mai et novembre) entraîne une surévaluation des volumes éventuellement prélevables sur ces périodes, avec des volumes plus importants qu'en période hivernale, quel que soit le scénario de prélèvement considéré.

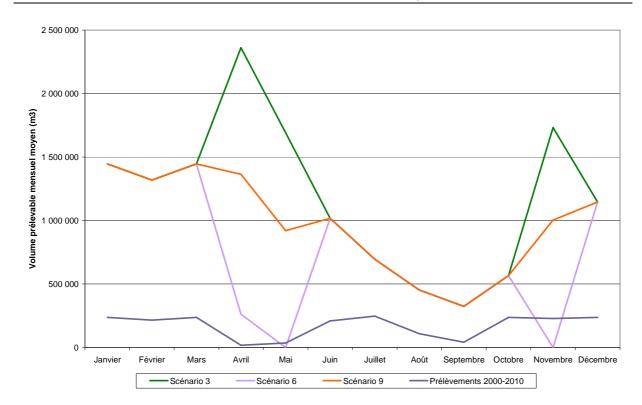


Figure 2–2 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 3, 6 et 9 sur la masse d'eau Hyrôme

Le graphique ci-dessus fait apparaître les disparités de volumes de prélèvement suivant la méthode de calcul retenue pour les volumes de prélèvement sur les périodes intermédiaires. En considérant une méthode de prélèvement de type hautes eaux, on atteint des volumes de prélèvements moyens quasi nuls sur ces périodes, générant, comme pour le calcul avec une « méthode de basses eaux », des effets de seuils importants. Incidemment, le scénario 9 (moyenne des scénarios 3 et 6) fournit des valeurs plus cohérentes avec les volumes de prélèvement calculés en hautes eaux et en basses eaux.

2.1.3 Résultats de la méthode RVA

Les résultats de la méthode sont présentés ci-après. Dans un premier temps est présenté un tableau des valeurs caractéristiques pour chaque paramètre et scénario (y compris chronique de référence) :

- La valeur médiane du paramètre ;
- Le coefficient de dispersion, qui renseigne la dispersion des valeurs autour de la valeur médiane : une valeur de 1 indique un échantillon très hétérogène (forte variabilité des valeurs), alors qu'une valeur égale à 0 indique un échantillon complètement homogène ;
- Les limites basse et haute de l'intervalle RVA tel que décrit précédemment, et calculées sur la base de la chronique de référence.

Tableau 2-4 : Tableau de synthèse des paramètres calculés par la méthode RVA sur la masse d'eau Hyrôme

			Chronic	que de référence		Scé	enario 1	Scé	enario 2	Sc	énario 3	Sce	enario 4	Scé	énario 5	Scé	nario 6	Sce	énario 7	Scér	nario 8	Scéi	nario 9
		Médiane	Coeff dispersion	Limite basse intervalle RVA	Limite haute intervalle RVA	Médiane	Coeff dispersion	Médiane	Coeff dispersion	Médiane	Coeff dispersion												
	Janvier	2.31	0.8537	0.7836	2.498	2.168	0.7081	1.988	0.6817	1.808	0.65	2.168	0.7081	1.988	0.6817	1.808	0.65	2.168	0.7081	1.988	0.6817	1.808	0.65
	Février	1.783	0.5911	1.146	1.888	1.517	0.6487	1.337	0.6098	1.157	0.5531	1.517	0.6487	1.337	0.6098	1.157	0.5531	1.517	0.6487	1.337	0.6098	1.157	0.5531
_	Mars	1.273	0.3482	1.131	1.332	1.066	0.3003	0.892	0.1992	0.8776	0.1858	1.066	0.3639	0.892	0.2339	0.8784	0.1942	1.066	0.3236	0.892	0.2349	0.8776	0.1945
e #1	Avril	0.8999	0.3986	0.7476	1.028	0.0735	0.4079	0.0735	0.4079	0.0735	0.4079	0.8547	0.2226	0.8547	0.1778	0.8547	0.1695	0.4536	0.146	0.4536	0.146	0.4536	0.146
groupe	Mai	0.6231	0.5378	0.5278	0.7974	0.08175	0.2546	0.08175	0.2546	0.08175	0.2546	0.6033	0.5352	0.6033	0.5332	0.6033	0.5332	0.3389	0.4647	0.3389	0.4647	0.3389	0.4647
ı6 np	Juin	0.414	0.6962	0.3754	0.5752	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578	0.09091	0.1578
	Juillet	0.2715	1.121	0.2433	0.4711	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812	0.08893	0.08812
nètr	Août	0.2141	1.027	0.1572	0.3422	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098	0.09497	0.06098
Paramètres	Septembre	0.2124	0.8879	0.1265	0.2492	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523	0.1108	0.08523
Ь	Octobre	0.166	2.506	0.1504	0.4986	0.1184	0.06265	0.1184	0.06265	0.1184	0.06265	0.1184	0.06115	0.1184	0.06115	0.1184	0.06115	0.1184	0.06115	0.1184	0.06115	0.1184	0.06115
	Novembre	0.562	0.8163	0.34	0.624	0.1242	0.4921	0.1242	0.4921	0.1242	0.4921	0.5881	0.8594	0.5881	0.8594	0.5881	0.8594	0.351	0.7742	0.351	0.7742	0.351	0.7742
	Décembre	0.6891	2.041	0.5643	1.288	0.7399	1.598	0.7399	1.355	0.7399	1.296	0.7399	1.598	0.7399	1.355	0.7399	1.296	0.7399	1.598	0.7399	1.355	0.7399	1.296
	Q minimum 1j	0.108	1.403	0.07018	0.1424	0.04858	1.293	0.04858	1.293	0.04858	1.293	0.05802	0.3423	0.05802	0.3423	0.05802	0.3423	0.05802	0.3423	0.05802	0.3423	0.05802	0.3423
	Q minimum 3j	0.1094	1.412	0.07116	0.1428	0.05057	0.7169	0.05057	0.7169	0.05057	0.7169	0.07411	0.3869	0.07411	0.3869	0.07411	0.3869	0.07411	0.3869	0.07411	0.3869	0.07411	0.3869
#2	Q minimum 7j	0.1126	1.424	0.07319	0.1461	0.05431	0.2535	0.05431	0.2535	0.05431	0.2535	0.08211	0.2226	0.08211	0.2226	0.08211	0.2226	0.08211	0.2226	0.08211	0.2226	0.08211	0.2226
тbе	Q minimum 30j	0.1326	1.309	0.08579	0.1682	0.06327	0.3304	0.06327	0.3304	0.06327	0.3304	0.08698	0.1033	0.08698	0.1033	0.08698	0.1033	0.08698	0.1033	0.08698	0.1033	0.08698	0.1033
gro	Q minimum 90j	0.1852	1.007	0.1247	0.2544	0.08075	0.151	0.08075	0.151	0.08075	0.151	0.08944	0.06654	0.08944	0.06654	0.08944	0.06654	0.08944	0.06654	0.08944	0.06654	0.08944	0.06654
np :	Q maximum 1j	4.694	0.577	4.517	5.563	5.069	0.5437	4.889	0.5269	4.709	0.5089	5.069	0.5437	4.889	0.5269	4.709	0.5089	5.069	0.5437	4.889	0.5269	4.709	0.5089
itres	Q maximum 3j	4.47	0.6883	3.642	5.119	4.816	0.6582	4.636	0.6838	4.456	0.7114	4.816	0.6582	4.636	0.6838	4.456	0.7114	4.816	0.6582	4.636	0.6838	4.456	0.7114
amé	Q maximum 7j	4.117	0.6053	3.104	4.704	4.112	0.6063	3.932	0.634	3.752	0.6644	4.112	0.6063	3.932	0.634	3.752	0.6644	4.112	0.6063	3.932	0.634	3.752	0.6644
Par	Q maximum 30j	2.805	0.5511	2.176	3.245	2.706	0.4228	2.526	0.4284	2.346	0.4483	2.706	0.4713	2.526	0.4803	2.346	0.491	2.706	0.4228	2.526	0.4284	2.346	0.4483
	Q maximum 90j	1.934	0.6239	1.179	2.215	1.748	0.5949	1.58	0.5838	1.432	0.5668	1.761	0.5455	1.639	0.5157	1.52	0.5018	1.751	0.5924	1.583	0.5811	1.435	0.5639
	Nbre jrs assec	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
du 4	Nbre de creux	1	1	0	1	2	2	2	2	2	2	1	0	1	0	1	0	1	1	1	1	1	1
tres	Durée moy creux	63	0.7183	25.85	82.43	113	2.013	113	2.013	113	2.013	152	0.06579	152	0.06579	152	0.06579	149	0.4228	149	0.4228	149	0.4228
amètr proupe	Nbre de pics	3	0.6667	2	3.04	3	1.333	3	1	3	1.333	3	1.667	3	1.667	3	2	3	1	3	1.333	3	1.333
Par	Durée moy pics	7	0.8214	5	9.555	5.5	2.477	5	1.7	4.5	1.222	5.5	0.7727	5	0.975	4.5	1.083	4.5	1.194	5	0.675	4	0.8438
#5	Tx var augment. Q	0.04762	1.229	0.03089	0.07298	0.000395	0.5182	0.000419	0.4893	0.000419	0.4688	0.000329	0.6079	0.000365	0.5144	0.000376	0.582	0.000334	0.7161	0.0003681	0.5998	0.0003814	0.5639
Para	Tx var dimunition Q	-0.00745	-0.5871	-0.009123	-0.006885	-0.02571	-0.7563	-0.02528	-0.9769	-0.02762	-0.9785	-0.01437	-1.756	-0.01193	-2.657	-0.01153	-2.539	-0.01486	-2.156	-0.01384	-2.73	-0.01058	-2.916
gro	Nbre de chgt évol. Q	35	0.5429	31.92	41.32	49	0.4694	49	0.4286	51	0.4118	44	0.4773	44	0.4773	44	0.4545	46	0.413	48	0.3958	48	0.3958

Moyenne	0.86055333		0.616316	0.557026	0.546966	0.37235033	0.330297	0.345137	0.388384	0.346394	0.33978733

A la lecture de ce tableau, il est possible de tirer des premières conclusions quant à l'impact des scénarios de prélèvement sur les écoulements en comparaison de la chronique de référence :

- Les valeurs médianes ont tendance à baisser pour les paramètres de magnitude (débits médians mensuels), mais aussi pour les valeurs de minimum sur n jours : Ces baisses de valeurs sont particulièrement importantes pour les mois où la méthode de calcul de basses eaux s'applique. On constate également une diminution des valeurs médianes pour la durée des pics de débit ;
- Les valeurs médianes ont tendance à stagner, voir augmenter légèrement, pour les paramètres de débit maximum (maximum sur n jours). Cela reflète, en moyenne, l'impact plus limité des prélèvements durant les périodes de hautes eaux. On constate également une augmentation des valeurs médianes pour la durée des creux de débits ;
- On constate globalement une baisse de l'hétérogénéité des paramètres caractérisant le régime hydrologique pour les scénarios de prélèvement : l'existence de prélèvements tend donc à « lisser » le régime hydrologique, dans des proportions qui peuvent varier suivant les scénarios. Il est attendu que les paramètres pour lesquels on a simultanément un écart important de la valeur médiane et un coefficient de dispersion proche de 0 en comparaison de la chronique de référence soient les plus altérés dans le cadre de la méthode RVA.

Le tableau ci-après présente le résumé des calculs de la méthode RVA pour les différents scénarios de prélèvement modélisés. Pour chaque paramètre est présenté le pourcentage d'altération et la classe d'altération qui en découle. L'altération globale pour chaque scénario est également calculée selon les modalités décrites précédemment, en considérant :

- D'une part, l'ensemble des paramètres analysés ;
- D'autre part, l'ensemble des paramètres hors débits moyens mensuels des mois de juin à octobre (période de calcul de basses eaux). Les paramètres retenus pour ce calcul sont identifiés en saumon dans le tableau ci-dessous.

Tableau 2-5 : Résumé des résultats de la méthode RVA sur la masse d'eau Hyrôme

		Scéna	ario 1	Scén	ario 2	Scéna	ario 3	Scén	ario 4	Scén	ario 5	Scén	ario 6	Scéna	ario 7	Scér	ario 8	Scén	ario 9
		Alteration %	Classe d'altération																
	Janvier	60%	Modérée																
	Février	0%	Faible	0%	Faible	20%	Faible	0%	Faible	0%	Faible	20%	Faible	0%	Faible	0%	Faible	20%	Faible
#1	Mars	-80%	Forte	-100%	Forte	-80%	Forte	-60%	Modérée	-100%	Forte	-80%	Forte	-80%	Forte	-100%	Forte	-80%	Forte
ре	Avril	-100%	Forte	-100%	Forte	-100%	Forte	0%	Faible	0%	Faible	0%	Faible	-100%	Forte	-100%	Forte	-100%	Forte
groupe	Mai	-100%	Forte	-100%	Forte	-100%	Forte	0%	Faible	0%	Faible	0%	Faible	-100%	Forte	-100%	Forte	-100%	Forte
5 np	Juin	-100%	Forte																
	Juillet	-100%	Forte																
Paramètres	Août	-100%	Forte																
Эm	Septembre	-100%	Forte																
Pai	Octobre	-100%	Forte																
	Novembre	-60%	Modérée	-60%	Modérée	-60%	Modérée	-20%	Faible										
	Décembre	-20%	Faible																
	Q minimum 1j	-80%	Forte	-80%	Forte	-80%	Forte	0%	Faible										
2	Q minimum 3j	-60%	Modérée	-60%	Modérée	-60%	Modérée	20%	Faible										
# •	Q minimum 7j	-60%	Modérée	-60%	Modérée	-60%	Modérée	60%	Modérée										
groupe	Q minimum 30j	-100%	Forte	-100%	Forte	-100%	Forte	20%	Faible										
gro	Q minimum 90j	-100%	Forte																
np	Q maximum 1j	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible
Paramètres	Q maximum 3j	-40%	Modérée	0%	Faible	0%	Faible	-40%	Modérée	0%	Faible	0%	Faible	-40%	Modérée	0%	Faible	0%	Faible
Шè	Q maximum 7j	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible
ara	Q maximum 30j	20%	Faible	0%	Faible	20%	Faible	0%	Faible	0%	Faible								
	Q maximum 90j	0%	Faible	-20%	Faible	0%	Faible	0%	Faible	0%	Faible	20%	Faible	0%	Faible	0%	Faible	20%	Faible
	Nbre jrs assec	-36%	Modérée	-36%	Modérée	-36%	Modérée	0%	Faible										
es Je	Nbre de creux	-57%	Modérée	-57%	Modérée	-57%	Modérée	43%	Modérée	43%	Modérée	43%	Modérée	0%	Faible	0%	Faible	0%	Faible
ramètres u groupe #4	Durée moy creux	-100%	Forte	-100%	Forte	-100%	Forte	-75%	Forte	-75%	Forte	-75%	Forte	-50%	Modérée	-50%	Modérée	-50%	Modérée
ran J gi	Nbre de pics	-33%	Modérée	-50%	Modérée	-50%	Modérée	-17%	Faible	-50%	Modérée	-50%	Modérée	-17%	Faible	-50%	Modérée	-50%	Modérée
Para du	Durée moy pics	-40%	Modérée	-40%	Modérée	-20%	Faible	0%	Faible	0%	Faible	-20%	Faible	-40%	Modérée	0%	Faible	-60%	Modérée
a Oe	Tx var augment. Q	-100%	Forte																
Para groupe #5	Tx var dimunition Q	-100%	Forte	-100%	Forte	-100%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-100%	Forte	-100%	Forte	-80%	Forte
_ ig	Nbre de chgt évolution Q	-80%	Forte	-80%	Forte	-80%	Forte	-40%	Modérée	-80%	Forte								
	Altération globale	-60%	Forte	-61%	Forte	-58%	Forte	-30%	Forte	-31%	Forte	-30%	Forte	-40%	Forte	-39%	Forte	-39%	Forte
	Altération hors mois d'été	-52%	Forte	-53%	Forte	-50%	Forte	-16%	Forte	-18%	Forte	-16%	Forte	-28%	Forte	-27%	Forte	-26%	Forte

En première approche, il convient de s'intéresser à certaines incohérences dans les résultats de la méthode RVA :

- Pour certains paramètres (notamment débit médian du mois de janvier, débit minimum sur 7 jours pour certains scénarios), une altération positive modérée est calculée, alors qu'elle ne l'est pas pour les paramètres les encadrant : cela s'explique par le fait que certaines valeurs, situées au-delà de l'intervalle RVA en situation de référence, se retrouvent dans l'intervalle, pour le scénario avec prélèvement. Si cette situation traduit une baisse de la fréquence d'apparition des valeurs les plus hautes, celles-ci restent à proximité des valeurs médianes ;
- Pour certains paramètres, des écarts d'altération sont constatés pour deux scénarios pour lesquels les méthodes de calcul devraient aboutir à des résultats très similaires. C'est notamment le cas pour le débit médian du mois de mars entre le scénario 1 et le scénario 4. Cela s'explique par un effet de seuil et la faible taille de l'échantillon, qui entraîne le passage d'une classe d'altération à une autre pour un écart de quelques litres sur une valeur de débit moyen mensuel.
- Pour la durée des creux et leur nombre, les scénarios 7 à 9 indiquent une altération moins importante que pour les scénarios 4 à 6. Cela est dû au fait que la durée des creux est la moyenne de ces durées pour chaque année. Ainsi, un artefact de modélisation peut conduire à franchir la valeur de creux pour 1 journée et ainsi aboutir à une durée moyenne des creux très inférieure à la réalité. Sur cette base, il apparaît que l'altération pour la durée des creux et leur nombre pour les scénarios 7 à 9 devrait être la même que pour les scénarios 4 à 6.

Ces quelques artefacts ne remettent cependant pas en cause la robustesse de l'analyse, puisque les recoupements entre les différents scénarios permettent de limiter leur impact sur les conclusions de cette approche.

Pour l'analyse des résultats de la méthode RVA, on s'intéresse d'abord à l'altération globale. Celle-ci est, comme évoqué plus haut, à relativiser, dans la mesure où une altération forte sur un seul paramètre conduit à classer le scénario comme ayant une altération forte. Or, la méthode de calcul en période de basses eaux conduit systématiquement à des altérations fortes, déclassant systématiquement chacun des scénarios modélisés. Si ce phénomène est atténué en ne considérant pas les mois d'été dans l'analyse, elle ne modifie pas le constat. Il est donc proposé d'étudier l'altération globale au regard des % d'altération moyenne pour chaque scénario. Sur cette base, il apparaît clairement que l'altération globale d'un scénario dépend bien plus de la méthode de calcul des volumes prélevables sur les mois intermédiaires (comparaison des valeurs pour les scénarios 1, 4 et 7 par exemple) que sur les seuils maximum de prélèvements en période de hautes eaux (comparaison des valeurs pour les scénarios 4, 5 et 6 par exemple).

En analysant les données paramètre par paramètre, les interprétations suivantes sont avancées :

Sur les débits médians mensuels en période de hautes eaux : les altérations sont faibles à modérées (pour le mois de janvier, voir commentaire ci-dessus) pour chaque mois, hormis pour le mois de mars, quel que soit le scénario modélisé. Il apparaît donc que les seuils définis sont pertinents au regard des paramètres hydrologiques testés. Pour le mois de mars, l'altération est forte pour la quasi totalité des scénarios. Cela s'explique par le fait que les limites de l'intervalle RVA sont très proches, conduisant à afficher des altérations

Unité Hydraulique Fluviale

alors que les ordres de grandeur de l'impact des prélèvements sur les débits sont très similaires à ceux observés sur les mois de janvier et février ;

- Sur les débits médians mensuels sur les périodes intermédiaires : Pour les mois d'avril et mai, les altérations sont faibles pour les scénarios 4 à 6. Cela est dû au fait que les prélèvements sont généralement faibles à nuls pour ces mois-ci, les débits naturels étant rarement supérieurs au module sur cette période. Pour les autres scénarios, l'altération est forte. A ce titre, il est clair que des prélèvements importants sur ces périodes conduisent à dégrader significativement les débits médians sur cette période. Pour le mois de novembre, l'altération est beaucoup moins marquée, notamment pour les scénarios 4 à 9. A ce titre, il apparaît pertinent de proposer la possibilité d'effectuer des prélèvements sur ce mois, dans la mesure où l'étiage ne se prolonge pas sur le mois d'octobre ;
- Sur les débits médians mensuels sur la période de basses eaux : Sans exception, les altérations sont fortes sur cette période. Ce constat est à relativiser dans la mesure où il n'était pas attendu de la méthode RVA d'apporter des éléments pour se positionner sur les prélèvements à cette période de l'année;
- Sur les débits minimums sur n jours: les altérations sont fortes pour l'ensemble des scénarios sur le débit minimum sur 90 jours: cela ressort du constat dressé ci-dessus sur les prélèvements en période de basses eaux. Pour les autres valeurs, seuls les scénarios 1 à 3 conduisent à des altérations modérées à fortes: cela témoigne de l'impact de valoriser une méthode de calcul « basses eaux » sur les mois d'avril et mai. Cela appuie clairement la position d'exclure ou de limiter fortement les prélèvements sur cette période;
- Sur les débits maximums sur n jours : les altérations sont généralement faibles sur ces paramètres, témoignant de l'impact limité des prélèvements en hautes eaux sur les débits de crue. A ce titre, et en confirmation des conclusions tirées plus haut sur les débits médians, il apparaît clair que les seuils de prélèvement proposés pour le calcul des volumes prélevables en période de hautes eaux sont cohérents avec le maintien d'un régime hydrologique proche des conditions naturelles ;
- Sur le nombre de jours d'assecs (zero days): les altérations sont nulles pour les scénarios 4 à 9, témoignant de l'absence d'assecs sur la chronique analysée. En revanche, les altérations sont modérées pour les scénarios 1 à 3, indiquant l'impact de prélèvements calculés selon la méthode de basses eaux sur la période intermédiaire;
- Sur les périodes de « creux » : les altérations sont généralement modérées à fortes, témoignant de l'impact des prélèvements en période de basses eaux (voir sur les périodes intermédiaires pour les scénarios 1 à 3). Comme pour d'autres paramètres listés plus haut, la prise en compte de ces paramètres est à relativiser pour tirer des conclusions quant à la définition de volumes prélevables sur les périodes de hautes eaux et intermédiaire ;
- Sur les périodes de « pics » : les altérations sont généralement modérées à faibles, témoignant de l'impact limité des prélèvements en période de hautes eaux. Les altérations sont moins importantes pour les scénarios 4 à 7, indiquant que la méthode de calcul peut avoir un impact sur les crues printanières.

Sur les paramètres du groupe 5 : pour ces paramètres, il apparaît clair que l'introduction de prélèvements induit une certaine homogénéisation du régime hydrologique, conduisant à « tamponner » les variations de débits (accentuation des phénomènes de tarissement, limitation des hausses subites de débits, limitation du nombre de variations du débit). Compte tenu des altérations assez homogènes constatées pour les différents scénarios, ce groupe de paramètre est difficilement valorisable pour se positionner sur les scénarios les plus pertinents.

Sur la base des résultats fournis par la méthode RVA, les conclusions suivantes peuvent être tirées :

- Pour la période de hautes eaux : les seuils fixés a priori et s'appuyant sur les réflexions en cours à l'échelle Loire-Bretagne n'entraînent pas d'altération très importante des régimes d'écoulement sur l'Hyrôme. A ce titre, ils apparaissent pertinents, tout au moins au regard des résultats fournis par la méthode RVA : le seuil maximum de prélèvement pendant cette période peut être arrêté au regard des besoins identifiés sur la masse d'eau, mais aussi des éléments en cours de réflexion dans le cadre de la rédaction du prochain SDAGE (pour mémoire, les prélèvements seraient autorisés potentiellement jusqu'à 140% du module) ;
- Pour la période de basses eaux : les altérations sont généralement fortes sur ces périodes, notamment pour les durées supérieures à 30 jours. Pour les débits minimums sur des périodes inférieures à 30 jours, l'altération est faible, laissant donc penser que le débit plancher de basses eaux proposé permet de conserver des périodes de débits critiques proches de celles observées en condition « naturelle » ;
- Pour les mois d'avril et mai : il est avéré que la méthode de calcul de basses eaux sur ces deux mois conduit à des altérations très fortes sur plusieurs paramètres. Sur cette base, et compte tenu de l'enjeu piscicole sur cette période (notamment en terme de reproduction), il pourrait être pertinent de limiter au strict minimum les prélèvements sur cette période, quitte à autoriser à titre dérogatoire un prélèvement limité si les conditions hydrologiques le permettent. A noter qu'à ces mois correspondent généralement les volumes prélevés historiques les plus faibles (cf. Figure 2–1);
- Pour le mois de novembre : l'utilisation d'une méthode de calcul des prélèvements de basses eaux sur cette période conduit à des altérations modérées (-60%), la disqualifiant pour établir les volumes prélevables sur cette période. Cependant, le régime hydrologique apparaît moins sensible aux prélèvements sur cette période qu'en avril/mai et les enjeux piscicoles y sont potentiellement moins forts. A ce titre, il est proposé d'y autoriser des prélèvements dans la mesure où les conditions hydrologiques y sont favorables.

2.2 Evre Amont

2.2.1 Débits moyens mensuels et valeurs caractéristiques

Les débits moyens mensuels désinfluencés et les valeurs caractéristiques associées sont présentés cidessous.

Tableau 2-6 : Débits moyens mensuels désinfluencés et valeurs caractéristiques sur l'Evre Amont

(m3/s)	J	F	М	Α	М	J	J	Α	S	0	N	D
2000	4.329	4.285	3.029	2.248	2.274	1.205	1.079	0.582	0.679	2.290	5.780	6.985
2001	9.615	8.251	8.172	5.752	4.269	2.271	2.105	1.490	0.928	2.400	1.860	2.071
2002	2.831	4.019	4.242	2.260	1.550	0.962	0.562	0.907	1.009	2.005	5.438	6.013
2003	7.415	5.467	2.813	1.683	1.350	0.814	0.678	0.482	0.333	0.746	2.522	3.041
2004	6.559	4.318	2.844	1.731	1.044	0.621	0.384	0.233	0.142	0.788	1.034	1.320
2005	2.065	1.181	0.648	0.434	0.238	0.133	0.081	0.050	0.030	0.241	1.435	1.952
2006	2.224	2.036	2.738	1.989	1.006	0.599	0.384	0.254	0.658	1.674	2.634	4.933
2007	5.558	5.212	6.291	2.986	2.326	1.634	1.215	0.822	0.475	0.299	0.460	1.750
2008	2.881	2.989	2.362	2.039	1.622	1.453	0.735	0.493	0.347	0.447	2.050	2.063
2009	2.696	3.039	1.591	0.965	0.753	0.424	0.240	0.146	0.138	0.117	1.854	4.825
2010	5.214	4.327	3.122	2.703	1.350	0.845	0.503	0.305	0.202	0.256	1.169	2.542
Module	2.124	2.124	2.124	2.124	2.124	2.124	2.124	2.124	2.124	2.124	2.124	2.124
QMNA5	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115
Débit mensuel moyen (QM _{0,5})	4.671	4.102	3.441	2.254	1.617	0.997	0.724	0.524	0.449	1.024	2.385	3.409
Débit mensuel 7/10 (QM _{0,3})	3.387	3.112	2.328	1.537	1.055	0.677	0.426	0.305	0.276	0.558	1.484	2.392
Débit mensuel 8/10 (QM _{0,2})	2.610	2.514	1.655	1.104	0.715	0.484	0.246	0.172	0.171	0.276	0.939	1.776

2.2.2 Scénarios de prélèvement

Sur la base des scénarios de prélèvements et des valeurs caractéristiques définis précédemment, les scénarios sur la masse d'eau Evre Amont ont été construits avec les valeurs seuils suivantes.

Tableau 2-7 : Définition des scénarios de prélèvement testés sur la masse d'eau Evre Amont

Nom du scénario	Période basses eaux	Débit plancher basses eaux (m³/s)	Période hautes eaux	Débit plancher hautes eaux (m³/s)	Débit max hautes eaux (m³/s)	Volume prélevable mai / juin / novembre
Scénario 1	Avril à novembre	0.212	Décembre à mars	2.124	2.55	/
Scénario 2	Avril à novembre	0.212	Décembre à mars	2.124	2.97	/
Scénario 3	Avril à novembre	0.212	Décembre à mars	2.124	3.40	/
Scénario 4	Juin à octobre	0.212	Novembre à mai	2.124	2.55	/
Scénario 5	Juin à octobre	0.212	Novembre à mai	2.124	2.97	/
Scénario 6	Juin à octobre	0.212	Novembre à mai	2.124	3.40	/
Scénario 7	Juin à octobre	0.212	Décembre à mars	2.124	2.55	Moyenne Scénarios 1 et 4
Scénario 8	Juin à octobre	0.212	Décembre à mars	2.124	2.97	Moyenne Scénarios 2 et 5
Scénario 9	Juin à octobre	0.212	Décembre à mars	2.124	3.40	Moyenne Scénarios 3 et 6

Les volumes moyens de prélèvement par scénario sur la période considérée (2000-2010) sont comparés avec les volumes moyens prélevés historiquement sur la même période.

Tableau 2-8 : Volumes de prélèvements associés aux scénarios testés sur la masse d'eau Evre Amont

Volumes prélevés (*10 ³ m ³)	J	F	М	Α	M	J	J	Α	s	0	N	D	тот
Scénario 1	1138	1037	1138	5291	3761	2032	1371	835	614	2173	5631	1138	26 158
Scénario 2	2276	2074	2276	5291	3761	2032	1371	835	614	2173	5631	2276	30 608
Scénario 3	3413	3111	3413	5291	3761	2032	1371	835	614	2173	5631	3413	35 058
Scénario 4	1138	1037	1138	336	0	2032	1371	835	614	2173	676	1138	12 487
Scénario 5	2276	2074	2276	336	0	2032	1371	835	614	2173	676	2276	16 938
Scénario 6	3413	3111	3413	336	0	2032	1371	835	614	2173	676	3413	21 388
Scénario 7	1138	1037	1138	3078	1993	2032	1371	835	614	2173	2710	1138	19 256
Scénario 8	2276	2074	2276	3078	920	2032	1371	835	614	2173	2710	2276	22 634
Scénario 9	3413	3111	3413	3066	2103	2032	1371	835	614	2173	3269	3413	28 814
Volumes moyens historiques	416	380	416	20	46	310	362	156	58	416	403	416	3 401

Il ressort de ce tableau qu'en moyenne, les volumes de prélèvement issus des scénarios étudiés aboutissent à des valeurs beaucoup plus importantes que les volumes historiquement prélevés en volume annuel (comme c'était déjà le cas sur l'Hyrôme). Concernant les volumes mensuels, ils sont généralement plus importants dans les scénarios étudiés que les volumes historiques, hormis pour le mois de mai pour les scénarios 4 à 6. Pour mémoire, ces scénarios considèrent un seuil de prélèvement pour ce mois égal au module du cours d'eau.

Les différences entre les scénarios de prélèvements proposés sont soulignées par les graphiques cidessous. Le premier compare les volumes prélevables mensuels moyens pour les scénarios 1 à 3 (périodicité équivalente mais seuil maximum de prélèvement en hautes eaux différent), alors que le suivant compare ces volumes pour les scénarios 3, 6 et 9 (même seuil maximum de prélèvement en hautes eaux, mais stratégie différente pour les prélèvements sur les périodes dites intermédiaires).

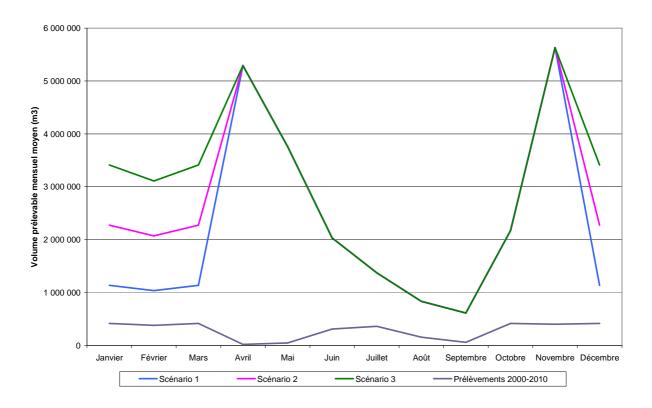


Figure 2–3 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 1, 2 et 3 sur la masse d'eau Evre Amont

Le graphique ci-dessus fait apparaître les disparités de volumes de prélèvement suivant les seuils de calcul retenus en période de hautes eaux. Il apparaît clair à la lecture de ce graphique que la prise en compte d'une méthode de calcul estivale (débit plancher égal au 1/10^e du module) sur les périodes intermédiaires (avril, mai et novembre) entraîne une surévaluation des volumes éventuellement prélevables sur ces périodes, avec des volumes plus importants qu'en période hivernale, quel que soit le scénario de prélèvement considéré.

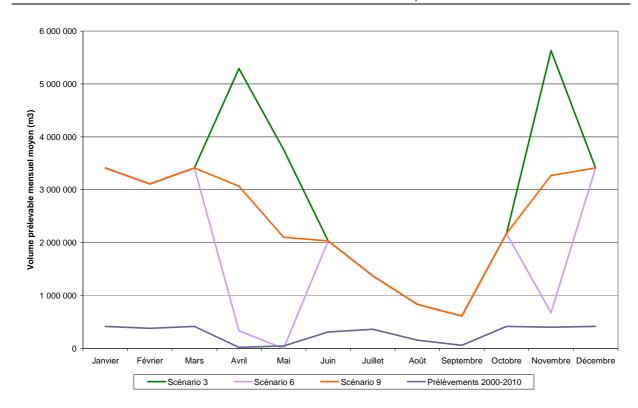


Figure 2–4 : Comparaison des volumes mensuels moyens de prélèvement pour les scénarios 3, 6 et 9 sur la masse d'eau Evre Amont

Le graphique ci-dessus fait apparaître les disparités de volumes de prélèvement suivant la méthode de calcul retenue pour les volumes de prélèvement sur les périodes intermédiaires. En considérant une méthode de prélèvement de type hautes eaux, on atteint des volumes de prélèvements moyens proches des valeurs des prélèvements historiques sur ces périodes, générant, comme pour le calcul avec une « méthode de basses eaux », des effets de seuils importants. Incidemment, le scénario 9 (moyenne des scénarios 3 et 6) fournit des valeurs plus cohérentes avec les volumes de prélèvement calculés en hautes eaux et en basses eaux.

2.2.3 Résultats de la méthode RVA

Comme sur la masse d'eau Hyrôme, les résultats de la méthode RVA présentés ci-après incluent :

- Le tableau des valeurs caractéristiques calculées pour chaque scénario (médiane, coefficient de dispersion et limites hautes et basses de l'intervalle RVA);
- Le résumé des résultats de la mise en œuvre de la méthode RVA pour chaque scénario.

Tableau 2-9 : Tableau de synthèse des paramètres calculés par la méthode RVA sur la masse d'eau Evre Amont

			Chroniqu	ue de référence		Scér	nario 1	Scéi	nario 2	Scér	nario 3	Scér	ario 4	Scér	nario 5	Scér	nario 6	Scér	nario 7	Scér	nario 8	Scér	nario 9
		Médiane	Coeff	Limite basse	Limite haute	Médiane	Coeff																
_	_		dispersion	interv RVA	interv RVA		dispersion																
1	Janvier	4.21	1.045	2.35	5,574	3.827	1.053	3,402	1.066	2.977	1.075	3.827	1.053	3,402	1.066	2.977	1.075	3.827	1.053	3,402	1.066	2.977	1.075
1	Février	4.154	0.5736	3.177	4.441	3.771	0.6319	3.346	0.6256	2.922	0.5733	3.771	0.6319	3.346	0.6256	2.922	0.5733	3.771	0.6319	3.346	0.6256	2.922	0.5733
#1	Mars	2.692	0.7444	2.614	3.055	2.309	0.7081	2.211	0.5474	2.196	0.3804	2.309	0.7081	2.211	0.5474	2.196	0.3804	2.309	0.7081	2.211	0.5474	2.196	0.3804
mbe #	Avril	1.778	0.4385	1.666	2.289	0.2697	0.0395	0.2697	0.0395	0.2697	0.0395	1.817	0.2801	1.817	0.2757	1.773	0.2822	1.02	0.2506	1.02	0.2506	1.02	0.2506
ďΩ	Mai	1.338	0.7207	1.013	1.624	0.2653	0.08115	0.2653	0.08115	0.2653	0.08115	1.377	0.7004	1.377	0.657	1.377	0.657	0.8198	0.5526	0.8198	0.5526	0.8198	0.5526
9	Juin	0.8804	0.6732	0.6137	1.179	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094	0.258	0.03094
8	Juillet	0.5498	0.9815	0.3782	0.75	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683	0.2554	0.02683
Je Je	Août	0.4478	1,229	0.2347	0.5772	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225	0.255	0.02225
ara	Septembre	0.3631	1.494	0.1961	0.4704	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943	0.254	0.2943
"	Octobre	0.43	3.161	0.2599	1.204	0.2445	0.2257	0.2445	0.2257	0.2445	0.2257	0.2547	0.223	0.2547	0.223	0.2547	0.223	0.2547	0.223	0.2547	0.223	0.2547	0.223
1	Novembre	1.53	0.7805	1.439	1.925	0.2663	0.0768	0.2663	0.0768	0.2663	0.0768	1.572	0.5911	1.572	0.5767	1.572	0.5723	0.8843	0.4678	0.8843	0.4678	0.8843	0.4678
	Décembre	2.462	1.236	1.714	4.529	2.204	1.188	2.199	0.9971	2.187	0.8323	2.204	1.188	2.199	0.9971	2.187	0.8323	2.204	1.188	2.199	0.9971	2.187	0.8323
	Q minimum 1j	0.2034	1.179	0.1505	0.2538	0	0	0	0	0	0	0.03696	2.696	0.03696	2.696	0.03696	2.696	0.03696	2.696	0.03696	2.696	0.03696	2.696
1	Q minimum 3j	0.2054	1.188	0.1514	0.2585	0.02549	2,929	0.02549	2.929	0.02549	2.929	0.08656	0.7273	0.08656	0.7273	0.08656	0.7273	0.08656	0.7273	0.08656	0.7273	0.08656	0.7273
#2	Q minimum 7j	0.2146	1.18	0.1555	0.2716	0.1056	0.5845	0.1056	0.5845	0.1056	0.5845	0.1496	0.4911	0.1496	0.4911	0.1496	0.4911	0.1496	0.4911	0.1496	0.4911	0.1496	0.4911
ab m	Q minimum 30j	0.2495	1.269	0.1897	0.3361	0.2024	0.2558	0.2024	0.2558	0.2024	0.2558	0.2141	0.3072	0.2141	0.3072	0.2141	0.3072	0.2141	0.3072	0.2141	0.3072	0.2141	0.3072
g	Q minimum 90j	0.3939	1.372	0.2425	0.4693	0.2283	0.1185	0.2283	0.1185	0.2283	0.1185	0.2371	0.1388	0.2371	0.1388	0.2371	0.1388	0.2371	0.1388	0.2371	0.1388	0.2371	0.1388
공	Q maximum 1j	9.009	0.5203	8.21	10.04	8.626	0.5434	8.201	0.5716	7.776	0.6028	8.626	0.5434	8.201	0.5716	7.776	0.6028	8.626	0.5434	8.201	0.5716	7.776	0.6028
E SE	Q maximum 3j	8.59	0.3031	7.951	9.319	8.437	0.3087	8.012	0.325	7.588	0.3432	8.437	0.3087	8.012	0.325	7.588	0.3432	8.437	0.3087	8.012	0.325	7.588	0.3432
amé	Q maximum 7j	8.386	0.3965	6.703	8.94	8.003	0.3883	7.578	0.37	7.153	0.3565	8.003	0.3883	7.578	0.37	7.153	0.3565	8.003	0.3883	7.578	0.37	7.153	0.3565
Pa.	Q maximum 30j	6.018	0.4142	5.165	7.011	5.635	0.3831	5.21	0.4143	4.785	0.441	5.635	0.4424	5.21	0.4785	4.785	0.5108	5.635	0.3831	5.21	0.4143	4.785	0.441
1	Q maximum 90j	4.561	0.5377	3.114	5.097	3.553	0.7235	3.205	0.739	2.895	0.751	3.845	0.6214	3.479	0.6477	3.152	0.6803	3.553	0.7243	3.205	0.7399	2.895	0.752
	Nbre jrs assec	0	0	0	0	2	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0
₽ 4	Nbre de creux	1	1	1	2	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0
48 88	Durée moy creux	57	1.246	33.7	84.4	243	0.5103	243	0.5103	243	0.5103	152	0.01316	152	0.01316	152	0.01316	152	0.05263	152	0.05263	152	0.05263
amè	Nbre de pics	2	1.5	1	3.04	1	2	1	1	1	1	1	1	1	1	1	2	1	2	1	1	1	1
Par	Durée moy pics	7	0.7143	5	8.7	8.5	1.706	8	2	6	2.75	8	1.375	8	1.844	5	2.25	8.5	1.706	8	2	6	2.75
#5	Tx var augment. Q	0.1119	0.7762	0.092	0.1626	0.0153	1.463	0.0153	1.463	0.0153	1.559	0.02872	1.462	0.02844	1.228	0.0271	1.334	0.02915	1.242	0.02915	1.243	0.02844	1.26
Para	Tx var dimunition Q	-0.02855	-1.158	-0.04327	-0.02172	-0.00401	-0.9512	-0.00383	-0.9154	-0.00383	-0.9527	-0.02279	-0.6764	-0.01752	-0.5158	-0.01482	-0.6771	-0.01229	-0.7298	-0.01102	-0.7906	-0.01037	-0.8358
8	Nbre de chgt évol. Q	37	0.4054	34.88	40.28	59	0.3898	59	0.3898	59	0.3729	53	0.3774	53	0.3585	54	0.3333	55	0.4	55	0.3818	55	0.4

_												
M	loyenne	0.864037		0.624372	0.592966	0.609342	0.532189	0.534129	0.569239	0.560945	0.525748	0.540402

Les résultats présentés ci-dessus appellent des commentaires similaires à ceux listés pour la masse d'eau Hyrôme, à savoir :

- Les valeurs médianes ont tendance à baisser pour les paramètres de magnitude (débits médians mensuels) et pour les valeurs de minimum sur n jours : cela reflète l'impact des prélèvements sur les écoulements en période de basses eaux. On constate également une baisse des valeurs maximum sur n jours, mais celle ci est généralement moins importante en proportion. Elle témoigne cependant d'un certain impact sur des prélèvements sur les écoulements en période de hautes eaux ;
- Les valeurs médianes ont tendance à stagner, voir augmenter légèrement, pour les durées des « pics » de débits. Cela tempère un peu l'impact des prélèvements durant les périodes de hautes eaux. On constate également une augmentation des valeurs médianes pour la durée des creux de débits, liée à la pression importante des prélèvements sur les périodes de basses eaux ;
- Comme sur l'Hyrôme, on constate globalement une baisse de l'hétérogénéité des paramètres caractérisant le régime hydrologique pour les scénarios de prélèvement, avec un « lissage » des valeurs des différents paramètres autour des valeurs médianes.

Les résultats de l'analyse d'altération sont présentés dans le tableau ci-dessous.

Tableau 2-10 : Résumé des résultats de la méthode RVA sur la masse d'eau Evre Amont

		Scé	enario 1	Scé	nario 2	Scé	nario 3	Scé	nario 4	Scé	nario 5	Scé	nario 6	Scé	nario 7	Scé	nario 8	Scé	nario 9
		Alter. %	Classe	Alter. %	Classe	Alter. %	Classe	Alter. %	Classe	Alter. %	Classe d'altération	Alter. %	Classe d'altération	Alter. %	Classe	Alter. %	Classe d'altération	Alter. %	Classe
	Janvier	-40%	d'altération Modérée	-40%	d'altération Modérée	-20%	d'altération Faible	-40%	d'altération Modérée	-40%	Modérée	-20%		-40%	d'altération Modérée	-40%	Modérée	-20%	d'altération Faible
	Février	-20%	Faible	0%	Faible	-40%	Modérée	-20%	Faible	0%	Faible	-40%	Faible Modérée	-20%	Faible	0%	Faible	-40%	Modérée
		-100%	Forte	-100%	Forte	-80%	Forte	-80%	Forte	-100%	Forte	-80%	Forte	-100%	Forte	-100%	Forte	-80%	Forte
#	Mars Avril	-100%	Forte	-100%	Forte	-100%	Forte	40%	Modérée	60%	Modérée	60%	Modérée	-80%	Forte	-80%	Forte	-80%	Forte
groupe	Mai	-100%	Forte	-100%	Forte	-100%	Forte	0%	Faible	0%	Faible	0%	Faible	-40%	Modérée	-40%	Modérée	-40%	Modérée
	Juin	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte
np s	Juillet	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte
E E	Août	80%	Forte	80%	Forte	80%	Forte	80%	Forte	80%	Forte	80%	Forte	80%	Forte	80%	Forte	80%	Forte
E P	Septembre	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée
Paramètres	Octobre	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée
_	Novembre	-100%	Forte	-100%	Forte	-100%	Forte	-20%	Faible	-20%	Faible	-20%	Faible	-100%	Forte	-100%	Forte	-100%	Forte
	Décembre	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée	40%	Modérée
	Q minimum 1j	-100%	Forte	-100%	Forte	-100%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte
2	Q minimum 3j	-100%	Forte	-100%	Forte	-100%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte
非	Q minimum 7j	-80%	Forte	-80%	Forte	-80%	Forte	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible
groupe	Q minimum 30j	40%	Modérée	40%	Modérée	40%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée	60%	Modérée
	Q minimum 90j	-60%	Modérée	-60%	Modérée	-60%	Modérée	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible
큣	Q maximum 1j	-20%	Faible	-60%	Modérée	-60%	Modérée	-20%	Faible	-60%	Modérée	-60%	Modérée	-20%	Faible	-60%	Modérée	-60%	Modérée
Paramètres	Q maximum 3j	-20%	Faible	-20%	Faible	-40%	Modérée	-20%	Faible	-20%	Faible	-40%	Modérée	-20%	Faible	-20%	Faible	-40%	Modérée
E .	Q maximum 7j	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible	-20%	Faible
ara	Q maximum 30j	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible	-20%	Faible	0%	Faible	-20%	Faible
	Q maximum 90j	0%	Faible	0%	Faible	-20%	Faible	0%	Faible	20%	Faible	20%	Faible	0%	Faible	0%	Faible	-20%	Faible
	Nbre jrs assec	-73%	Forte	-73%	Forte	-73%	Forte	-27%	Faible	-27%	Faible	-27%	Faible	-27%	Faible	-27%	Faible	-27%	Faible
amètres groupe #4	Nbre de creux	25%	Faible	25%	Faible	25%	Faible	38%	Modérée	38%	Modérée	38%	Modérée	38%	Modérée	38%	Modérée	38%	Modérée
met Tou	Durée moy creux	-100%	Forte	-100%	Forte	-100%	Forte	-67%	Modérée	-67%	Modérée	-67%	Modérée	-33%	Modérée	-33%	Modérée	-33%	Modérée
Paramètres du groupe #4	Nbre de pics	33%	Modérée	50%	Modérée	50%	Modérée	33%	Modérée	50%	Modérée	33%	Modérée	33%	Modérée	50%	Modérée	50%	Modérée
<u>~</u> 0	Durée moy pics	-50%	Modérée	0%	Faible	-75%	Forte	-25%	Faible	0%	Faible	-50%	Modérée	-50%	Modérée	0%	Faible	-75%	Forte
				4.000				4.000						4000/		4.000		4000	
Para groupe #5	Tx var augment. Q	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte	-100%	Forte
B Jo #	Tx var dimunition Q	-100%	Forte	-100%	Forte	-100%	Forte	0%	Faible	-60%	Modérée	-60%	Modérée	-60%	Modérée	-60%	Modérée	-80%	Forte
0,	Nbre de chgt évolution Q	-100%	Forte	-100%	Forte	-100%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte	-80%	Forte
	Alt Continue al al 1	4504	F	4404	F	400/	F. 1	2004		2004	F	0504	F	2004	F	2004		0504	
	Altération globale	-46%	Forte	-44%	Forte	-48%	Forte	-22%	Forte	-22%	Forte	-25%	Forte	-32%	Forte	-30%	Forte	-35%	Forte
	Altération hors mois d' été	-51%	Forte	-48%	Forte	-53%	Forte	-21%	Forte	-21%	Forte	-25%	Forte	-34%	Forte	-31%	Forte	-37%	Forte

Comme sur l'Hyrôme, quelques incohérences sont notées dans les résultats de la méthode RVA:

- Pour certains paramètres (notamment débit médian des mois de janvier), une altération plus importante est calculée pour les scénarios prélevant des volumes moins importants (scénarios 1,2, 4, 5, 7 et 8) que pour ceux avec des volumes de prélèvement plus forts (scénarios 3, 6 et 9). Cela s'explique par le fait que, pour ces 3 derniers scénarios, certaines valeurs, situées au delà de l'intervalle RVA en situation de référence, se retrouvent dans l'intervalle pour le scénario avec prélèvement, conduisant à une altération moins importante que pour les scénarios premièrement cités. Si cette situation traduit une baisse de la fréquence d'apparition des valeurs les plus hautes, celles-ci restent à proximité des valeurs médianes. La remarque s'applique également pour le débit médian du mois de mars pour les couples de scénarios 2 et 3, 5 et 6 et 8 et 9 ;
- Pour certains paramètres, des écarts d'altération sont constatés pour deux scénarios pour lesquels les méthodes de calcul devraient aboutir à des résultats très similaires. C'est notamment le cas pour le débit médian du mois de mars entre le scénario 1 et le scénario 4. Cela s'explique par un effet de seuil et la faible taille de l'échantillon, qui entraîne le passage d'une classe d'altération à une autre pour un écart de quelques litres sur une valeur de débit moyen mensuel. La taille de l'échantillon et la présence d'un effet de seuil expliquent également une altération moins forte pour le nombre d'épisodes de creux pour les scénarios 1 à 3 que pour les scénarios 4 à 9 ;
- Comme sur l'Hyrôme, pour la durée des creux, les scénarios 7 à 9 indiquent une altération moins importante que pour les scénarios 4 à 6. Cela est dû au fait que la durée des creux est la moyenne de ces durées pour chaque année. Ainsi, un artefact de modélisation peut conduire à franchir la valeur de creux pour 1 journée et aboutir à une durée moyenne des creux très inférieure à la réalité. Sur cette base, il apparaît que l'altération pour la durée des creux et leur nombre pour les scénarios 7 à 9 devrait être la même que pour les scénarios 4 à 6.

Ces quelques artefacts ne remettent cependant pas en cause la robustesse de l'analyse, puisque les recoupements entre les différents scénarios permettent de limiter leur impact sur les conclusions de l'approche.

L'analyse de l'altération globale est à relativiser ici aussi dans la mesure où une altération forte sur un seul paramètre conduit à classer le scénario comme ayant une altération globale forte, et que les altérations sont systématiquement fortes pour les paramètres représentant les modalités d'écoulement en période de basses eaux. Comme sur l'Hyrôme, l'analyse des % d'altération moyenne pour chaque scénario montre que l'altération globale d'un scénario dépend bien plus de la méthode de calcul des volumes prélevables sur les mois intermédiaires (comparaison des valeurs pour les scénarios 1, 4 et 7 par exemple) que sur les seuils maximum de prélèvements en période de hautes eaux (comparaison des valeurs pour les scénarios 4, 5 et 6 par exemple).

En analysant les données paramètre par paramètre, les interprétations suivantes sont avancées. Elles correspondent pour une grande partie avec l'analyse menée sur l'Hyrôme :

Sur les débits médians mensuels en période de hautes eaux : les altérations sont faibles à modérées pour chaque mois, hormis pour le mois de mars, quel que soit le scénario modélisé. Il apparaît donc que les seuils définis sont pertinents au regard des paramètres hydrologiques testés. Pour le mois de mars, l'altération est forte pour la quasi totalité des scénarios. Cela s'explique par le fait que les limites de l'intervalle RVA sont plus rapprochées sur le mois de janvier, conduisant à afficher des altérations alors que les

ordres de grandeur de l'impact des prélèvements sur les débits sont très similaires à ceux observés sur ce mois ;

- Sur les débits médians mensuels sur les périodes intermédiaires : Pour les mois d'avril et mai, les altérations sont faibles à modérées pour les scénarios 4 à 6. Cela est dû au fait que les prélèvements sont généralement faibles à nuls pour ces mois-ci, les débits naturels étant rarement supérieurs au module sur cette période. Pour les autres scénarios, l'altération est forte (modérée pour les scénarios 7 à 9 pour le mois de mai). A ce titre, il est clair que des prélèvements importants sur ces périodes conduisent à dégrader significativement les débits médians sur cette période. A l'inverse de l'Hyrôme, les altérations sur le mois de novembre sont systématiquement fortes pour les scénarios incluant des prélèvements (1 à 3 et 7 à 9). La possibilité de considérer des prélèvements pour cette période doit donc potentiellement être écartée, sauf si des conditions particulièrement favorables d'écoulement sont notées au mois d'octobre ;
- Sur les débits médians mensuels sur la période de basses eaux : les altérations sont fortes sur la période juin à août, et modérées en septembre octobre (bien qu'avec des taux d'altérations élevés). L'impact des prélèvements serait donc moins fort sur les écoulements de ces mois sur l'Evre Amont qu'il ne l'était sur l'Hyrôme. Ce constat est à relativiser dans la mesure où il n'était pas attendu de la méthode RVA d'apporter des éléments pour se positionner sur les prélèvements à cette période de l'année;
- Sur les débits minimums sur n jours: les altérations sont fortes pour l'ensemble des scénarios sur les débits minimum sur 1 à 3 jours, témoignant de l'impact des prélèvements sur les très faibles valeurs de débit en période estivale. En revanche, l'impact des prélèvements sur les durées plus longues (7 à 90 jours) est moins sensible (altération modérée à faible). Cela corrobore le fait que les altérations sur les périodes de basses eaux sont moins fortes sur l'Evre Amont qu'elles ne l'étaient sur l'Hyrôme (ou tout au moins que le débit plancher estival est plus proche du régime naturel qu'il ne l'était sur l'Hyrôme). Comme sur l'Hyrôme, l'impact des prélèvements sur les minimum sur n jours est plus fort pour les scénarios 1 à 3 que pour les autres scénarios, corroborant le fait qu'une méthode de calcul « basses eaux » n'est pas adaptée pour la définition des volumes prélevables sur les périodes intermédiaires (avril-mai et novembre);
- Sur les débits maximums sur n jours: les altérations sont généralement faibles sur ces paramètres, témoignant de l'impact limité des prélèvements en hautes eaux sur les débits de crue. A ce titre, et en confirmation des conclusions tirées plus haut sur les débits médians, il apparaît clair que les seuils de prélèvement proposés pour le calcul des volumes prélevables en période de hautes eaux sont cohérents avec le maintien d'un régime hydrologique proche des conditions naturelles;
- Sur le nombre de jours d'assecs (zero days): les altérations sont nulles pour les scénarios 4 à 9, témoignant de l'absence d'assecs sur la chronique analysée. En revanche, les altérations sont modérées pour les scénarios 1 à 3, indiquant l'impact de prélèvements calculés selon la méthode de basses eaux sur la période intermédiaire;
- Sur les périodes de « creux » : les altérations sont variables, mais globalement modérées à fortes (compte tenu du fait que l'altération pour le nombre de creux pour les scénarios 1 à 3 devrait être la même que pour les scénarios 4 à 9). Cela témoigne de l'impact des prélèvements en période de basses eaux (voir sur les périodes intermédiaires pour les scénarios 1 à 3);

- Sur les périodes de « pics » : les altérations sont généralement modérées à faibles, témoignant de l'impact limité des prélèvements en période de hautes eaux. Les altérations sont moins importantes pour les scénarios 4 à 6, indiquant que la méthode de calcul peut avoir un impact sur les crues printanières.
- Sur les paramètres du groupe 5 : pour ces paramètres, il apparaît clair que l'introduction de prélèvements induit une certaine homogénéisation du régime hydrologique, conduisant à « tamponner » les variations de débits (accentuation des phénomènes de tarissement, limitation des hausses subites de débits, limitation du nombre de variations du débit). Il apparaît cependant que la limitation des prélèvements dans la période avrilmai (scénarios 4 à 6, et dans une moindre mesure 7 à 9) conduit à limiter l'impact des prélèvements sur le gradient de tarissement (« fall rate »).

Sur la base des résultats fournis par la méthode RVA, les conclusions suivantes peuvent être tirées :

- Pour la période de hautes eaux : comme sur l'Hyrôme, les seuils fixés a priori et s'appuyant sur les réflexions en cours à l'échelle Loire-Bretagne n'entraînent pas d'altération très importante des régimes d'écoulement sur l'Evre Amont. A ce titre, ils apparaissent pertinents, tout au moins au regard des résultats fournis par la méthode RVA;
- Pour la période de basses eaux : les altérations sont généralement fortes sur ces périodes, notamment pour les mois d'été (juin à août) et sur les débits minimum sur quelques jours. En revanche, et à l'inverse de l'Hyrôme, les altérations modérées sur les débits minimum sur des périodes supérieures à 7 jours laissent penser que le débit plancher retenu sur l'Evre Amont permet d'assurer un écoulement « minimum estival » assez proche des conditions naturelles ;
- Pour les mois d'avril et mai : comme sur l'Hyrôme, la méthode de calcul de basses eaux sur ces deux mois conduit à des altérations très fortes sur plusieurs paramètres. Sur cette base, et compte tenu de l'enjeu piscicole sur cette période (notamment en terme de reproduction), il pourrait être pertinent de limiter au strict minimum les prélèvements sur cette période, quitte à autoriser à titre dérogatoire un prélèvement limité si les conditions hydrologiques le permettent;
- Pour le mois de novembre : l'utilisation d'une méthode de calcul des prélèvements de basses eaux, voir intermédiaire (scénarios 7 à 9) sur cette période conduit à des altérations fortes. Au contraire de l'Hyrôme, il ne paraît pas approprié d'autoriser des prélèvements selon des modalités estivales/intermédiaires sur cette période..

2.3 Description des scénarios retenus pour le calcul des volumes prélevables

A la lumière des résultats présentés précédemment, le groupe technique de suivi de l'étude a arrêté des modalités de détermination des volumes prélevables sur l'ensemble du cycle hydrologique. Ces modalités (et notamment la périodicité des modalités) sont également conformes au projet de SDAGE. Les grands principes retenus sont les suivants :

Sur la période estivale (juin à octobre) : le contexte particulièrement tendu du point de vue de la ressource pendant sur cette période, conjuguée à l'absence actée depuis la fin

des années 2000 de tout prélèvement direct, conduit à **n'autoriser aucun volume prélevable sur cette période**. Une méthode, décrite plus loin dans le rapport, vise cependant à **déterminer un volume de prélèvement passif par les plans d'eau connectés au réseau hydrographique**. Ce volume n'est pas prélevable en l'état mais indique l'effort à faire quant à la déconnexion des plans d'eau impactant le régime hydrologique en période estivale.

- Sur les périodes intermédiaires (avril-mai): aucun volume prélevable n'est autorisé par défaut sur ces périodes, vu l'impact de la plupart des scénarios analysés sur le régime hydrologique démontré précédemment par l'analyse RVA. Il est cependant arrêté qu'en cas de déficit exceptionnel du remplissage des retenues pendant la période hivernale, des volumes complémentaires pourraient être autorisés au prélèvement. Ces volumes de prélèvement sont autorisés à titre exceptionnel par dérogation. Ils ne font donc pas parti du cadre de gestion « courant » des prélèvements, et ne sont à ce titre pas intégrés à la présente analyse.
- Sur la période hivernale (novembre à mars) : les volumes prélevables sur cette période sont autorisés selon les modalités envisagées dans le cadre du SDAGE en cours d'élaboration, c'est-à-dire au delà d'un débit plancher égal au module « naturel » du cours d'eau, le débit maximal étant égal soit à 1,2 x module (scénario du SDAGE par défaut), soit à 1,4 x module (scénario dérogatoire du SDAGE, envisageable si l'impact d'un relèvement du seuil a été prouvé acceptable, ce qui est le cas par la méthode RVA). Un scénario complémentaire intégrant un débit maximal de prélèvement égal à 1,6 x module est également proposé suite à une demande spécifique du comité de pilotage de l'étude. A noter que pour le prélèvement hivernal, le seuil de déclenchement des prélèvements devra être discuté :
 - Il sera égal au module du cours d'eau si une gestion collective des prélèvements permet de répartir la fraction prélevable, notamment si elle est inférieure au volume maximum prélevable envisageable (0,2 ou 0,4 x le module);
 - Il sera égal au seuil maximum de prélèvement (1,2 ou 1,4 x le module) si aucune gestion collective des prélèvements n'est envisagée à l'échelle de la zone d'influence analysée.

Sur la base des principes ci-dessus, le scénario proposé pour établir le calcul des volumes prélevables, les mettre en regard des besoins actuels identifiés, et de calculer les débits d'objectifs associés est établir pour les modalités suivantes :

- De novembre à mars : volume prélevable calculé selon la méthode pour la période hivernale décrite précédemment, le débit plancher hivernal étant égal au module du cours d'eau et le seuil de prélèvement maximal étant de 1,4 x module.
- Sur les mois avril/mai: aucun prélèvement n'est autorisé par défaut sur cette période ;
- Sur les mois d'été: aucun prélèvement n'est autorisé sur cette période: un volume de prélèvement passif par les plans d'eau est cependant affiché, mais celui-ci n'est pas intégré au volume prélevable.

Un scénario complémentaire est mis en œuvre à titre informatif pour un débit maximal de prélèvement hivernal égal à 1,6 x le module. Les résultats de ce scénario sont présentés en annexe.

3

Calcul des volumes prélevables et définition des débits d'objectifs sur l'ensemble du territoire d'étude

3.1 Hypothèses méthodologiques retenues

Suite aux tests menés sur les masses d'eau de l'Hyrome et de l'Evre amont, les hypothèses définitives de travail sur l'ensemble du territoire ont été retenues afin de déterminer les volumes prélevables et les débits d'objectifs.

3.1.1 Tests sur les masses d'eau de l'Hyrôme et de l'Evre amont

A l'issue de l'analyse RVA et du choix des scénarios les plus pertinents, une analyse de satisfaction des volumes disponibles au prélèvement a été menée pour ces scénarios et pour une période de retour de 8 années sur 10 sur les masses d'eau de l'Hyrôme et de l'Evre amont. Il a été regardé dans quelle mesure les volumes prélevables définis pour cette période de retour sont susceptibles de garantir a minima les besoins passés, et d'éventuels prélèvements supplémentaires.

En général, les volumes prélevables pour chaque scénario sont calculés en valorisant les valeurs de débits moyens mensuels désinfluencés via des ajustements statistiques. Cette méthode, testée dans le cadre de la présente étude, n'a pas donné de résultats satisfaisants pour la période hivernale (ajustements statistiques très influencés par les années de faible prélèvement). Aussi, en hiver, un autre type de méthode a été développé afin de déterminer les volumes prélevables et est rappelé dans les paragraphes suivants.

En revanche, la méthode classique d'ajustements statistiques reste utilisée pour la période estivale. Les résultats doivent cependant être pris avec précaution sur cette période. En effet, comme déjà expliqué, aucun prélèvement direct au milieu n'est plus autorisé sur cette période. Ainsi, les volumes calculés sur la période juin/octobre constituent des prélèvements passifs par les plans d'eau connectés au milieu naturel, et ne sont à ce titre pas prélevables en l'état.

Les tests menés sur ces masses d'eau ont permis de conclure sur un certain nombre d'hypothèses La méthodologie finalement retenue est explicitée ci-après.

3.1.2 Paramètres de la méthode

Pour rappel, les hypothèses réalisées résident dans les paramètres suivants :

- La prise en compte ou non des rejets dans les débits présents en rivière à partir desquels sont déterminés les volumes prélevables ;
- Le découpage de l'année en différentes périodes. Ce paramètre a une influence importante car il entraîne un changement de mode de calcul des volumes prélevables. Il a une influence non négligeable sur les périodes de transition.
- La méthode de calcul des volumes prélevables selon la période de l'année considérée. Le volume prélevable en été est lié au franchissement 8 années sur 10 d'un seuil plancher. En hiver, le volume prélevable repose sur la tranche de débit comprise entre un seuil plancher (différent de celui de l'été) et un seuil haut assuré 8 années sur 10.
- Le mode de gestion des prélèvements (collectif ou individuel) qui conditionne le seuil de déclenchement des prélèvements hivernaux (seuil plancher),
- La tranche de prélèvements autorisée en hiver. Cette fraction prélevable du module (20%, 40% ou 60%, seuils discutés dans la partie précédente) conditionne le seuil haut du prélèvement hivernal.

A titre informatif, l'annexe du rapport présente les résultats de la méthode en considérant une fraction prélevable du module de 60 %.

3.1.3 Prise en compte ou non des rejets

Le choix de prendre en compte ou non les rejets dans les débits présents en rivière pour les prélèvements influe sur les volumes prélevables mais également sur la dilution de ces rejets dans le milieu naturel.

Il a été retenu d'exclure les volumes de rejet entrant dans le bilan hydrologique du calcul du volume prélevable en été. Ce postulat repose sur le choix de favoriser la possibilité pour le milieu naturel d'accepter ces volumes d'eaux traitées supplémentaires sans impact sur son fonctionnement (conservation d'un niveau de dilution suffisant) lors de la période estivale considérée comme la plus critique à ce sujet.

Les volumes prélevables et débits de référence établis plus loin considèrent les rejets hivernaux comme prélevables. Les rejets considérés à cette fin sont ceux de 2010. En effet, ceux-ci conduisent à considérer des retours au milieu documentés les plus récents, et donc les plus conformes à la réalité actuelle. Les rejets de 2010 considérés sont établis sur la base des rejets mensuels répartis uniformément en chronique journalière. Ces chroniques journalières sont établies par bassin et ajoutées aux débits présents en rivière sur lesquels repose la méthodologie développée plus loin.

3.1.4 Découpage en différentes périodes

L'année est découpée en trois périodes : l'été, l'hiver et une période intermédiaire. Ces périodes s'étendent sur les mois suivants :

Eté : de juin à octobre

Hiver : de novembre à mars

Période intermédiaire : avril et mai

3.1.5 Volumes prélevables sur la période intermédiaire

Comme explicité précédemment dans le rapport, les prélèvements en avril-mai ne sont pas autorisés par défaut. Ils pourront faire l'objet de dérogation en cas d'année à période hivernale défavorable et printanière favorable (hiver sec suivi d'un printemps pluvieux). La même méthode de calcul des volumes prélevables a néanmoins été mise en œuvre sur ces mois de période intermédiaire que sur les mois d'hiver, à titre informatif.

3.1.6 Volumes prélevables en hiver

En période hivernale, compte tenu de la nature géologique des bassins versants visées (socle granitique), le réseau hydrographique a un temps de réponse très rapide, rendant peu pertinent l'analyse statistique de débits moyens mensuels. Une nouvelle approche basée sur l'analyse des données journalières historiques est donc proposée ici.

Dans cette approche, les volumes prélevables ont été définis à partir de deux seuils : un seuil plancher et un seuil haut. En effet, il a été retenu d'autoriser les prélèvements lorsque les débits sont supérieurs au module et dans une certaine limite, afin de conserver les propriétés des crues. Cette limite haute peut reposer sur un prélèvement à hauteur de 20 % du module ou de 40 % du module sur les territoires où des investigations auraient permis de démontrer l'impact limité de ce volume de prélèvement sur les écoulements/milieux naturels. Les tests réalisés sur les masses d'eau de l'Hyrôme et de l'Evre amont ont permis de conclure que cet impact était effectivement limité. Les volumes prélevables en hiver s'élèvent donc à hauteur de 40 % du module par la suite, au maximum.

A titre informatif, l'annexe du rapport présente les résultats de la méthode en considérant une fraction prélevable du module de 60 %, scénario que le comité de pilotage de l'étude a souhaité étudier pour envisager le cas où il pourrait intégrer le futur SDAGE Loire-Bretagne suite à la consultation du public sur son contenu. Les modalités de calcul pour ce scénario sont exactement les mêmes que pour le scénario avec un prélèvement maximum à hauteur de 40% du module.

Par ailleurs, il a été montré dans le cadre des tests sur les masses d'eau de l'Hyrôme et de l'Evre amont que le mode de gestion des prélèvements pouvait avoir un impact significatif sur les volumes prélevables. Si les prélèvements sont effectivement autorisés dès le dépassement du module dans la limite de 40 % de ce module, cela nécessite une organisation de la gestion des prélèvements (gestion collective) afin de garantir le seuil plancher en rivière. En effet, dans le cas d'une gestion individuelle du prélèvement, il existe un risque si le débit en rivière est légèrement supérieur au module sans toutefois dépasser 1,4 x module : il est probable que tous les prélèvements soient alors déclenchés simultanément et que les 40% du module soient prélevés conduisant à ne laisser en rivière qu'un débit

inférieur au module. Aussi, en gestion individuelle, il est décidé de n'autoriser les prélèvements qu'à partir du moment où le débit dépasse la valeur de 1,4 x module. Les volumes prélevables sont alors automatiquement maximaux et correspondent à 40 % du module. Pour récapituler cette distinction de calcul suivant le mode de gestion des prélèvements il convient de retenir les éléments suivants :

- Gestion collective: Pour chaque jour où le débit dépasse le module, on considère soit le volume correspondant à 40 % du module si le débit dépasse 1,4 x module, soit le volume correspondant à la différence entre le débit observé et le module. Les volumes ainsi obtenus sur chacune des 11 années étudiées sont triés et la valeur dépassée 80 % des années permet d'établir les volumes prélevables.
- Gestion individuelle : Pour chaque jour où le débit dépasse 1,4 x module, on considère le volume correspondant à 40 % du module. Les volumes totaux ainsi obtenus chaque année sont triés et la valeur dépassée 80 % des années permet d'établir les volumes prélevables.

3.1.7 Volumes prélevables en été

En période estivale, **les prélèvements ne sont pas autorisés** comme rappelé précédemment. Une estimation des prélèvements passifs est proposée par différence des débits mensuels quinquennaux secs et du 1/10^{ème} du module.

La méthode utilisée pour le calcul de ces volumes prélevables passifs repose sur des ajustements statistiques classiques traduits par les points suivants :

- Ajustement statistique des débits moyens mensuels (QM) pour une période de retour de 8 années sur 10 (débit mensuel quinquennal sec) (QM_{0,2});
- Calcul du volume de prélèvement passif estival (VPA_{0,2}) garanti 8 années sur 10 mois par mois, par valorisation du débit plancher de basses eaux :
 - o Si $QM_{0,2} < 1/10e$ Module, $VPA_{0,2} = 0$ (en m³/s)
 - o Si $QM_{0,2} > 1/10e$ Module, $VPA_{0,2} = QM_{0,2} 1/10e$ Module (en m³/s)

3.1.8 Débits de référence

Ces volumes prélevables sont comparés aux volumes historiquement prélevés (notamment pour l'année de référence 2009 et en moyenne sur les 11 années étudiées) avant de permettre la définition de débits de référence par saison.

Le débit d'objectif se définit comme étant le débit pour lequel sont simultanément satisfaits le bon état des milieux aquatiques, les usages prioritaires et, en moyenne huit années sur dix, l'ensemble des usages. Il s'agit donc du débit transitant au droit d'un point nodal et qui permet d'assurer, en moyenne 4 années sur 5, les besoins du milieu naturel et les usages à l'aval.

Le débit d'objectif faisant intervenir une période de retour de 4 années sur 5, il intègre donc les débits naturels disponibles pour cette période de retour et éventuellement les volumes prélevables associés. Le débit d'objectif intègre également les volumes rejetés sur le bassin versant, ceux-ci n'étant pas considérés prélevables.

Le calcul du débit de référence varie entre les périodes de basses et de hautes eaux.

Ainsi, en période de basses eaux, il se calcule de la façon suivante :

$DO_{BE} =$

Q plancher basses eaux (ou, s'il n'est pas atteint en hydrologie désinfluencée, le débit moyen mensuel d'occurrence 5 ans sec)

- + Q rejet
- + Q aval (ce terme correspondant à un éventuel débit complémentaire à fournir pour assurer le maintien des DOE sur d'éventuels points nodaux aval)

En période de hautes eaux, le débit de référence correspond au débit plancher de hautes eaux, à savoir le module désinfluencé. En période intermédiaire, le débit de référence correspond par défaut au module désinfluencé (débit plancher de hautes eaux). S'il n'est pas naturellement atteint (en hydrologie quinquennale), le débit de référence est fixé au débit moyen mensuel d'occurrence 5 ans sec ajouté au débit de rejet).

3.2 Définition des ensembles de masse d'eau

Pour rappel, 22 masses d'eau sont intégrées au périmètre d'étude. L'ensemble de ces masses d'eau n'est cependant pas suivi par la DREAL et certaines manquent donc d'informations quant aux débits qui y transitent.

Ainsi, il a été retenu de travailler à l'échelle d'ensembles de masses d'eau jaugées par des stations hydrométriques. Certaines masses d'eau restent néanmoins orphelines et sont traitées comme telles. La carte ci-après illustre les sous-ensembles de travail définis, à savoir :

- Le **Layon amont** qui correspond à l'amont de la masse d'eau du Layon amont soumis à l'influence de la station hydrométrique du Layon à Saint-Georges-sur-Layon;
- Le Layon intermédiaire qui est composé par l'aval de la masse d'eau du Layon amont (situé en aval de la station de Saint-Georges-sur-Layon), par l'amont de la masse d'eau du Layon aval soumis à l'influence de la station hydrométrique du Layon à Saint-Lambert-du-Lattay et par les masses d'eau de la Villaine, d'Arcison, de Javoinneau et du Dreuillé;
- Le **Layon aval** composé de l'aval de la masse d'eau du Lyon aval (situé en aval de la station de Saint-Lambert-du-Lattay) et des masses d'eau du Jeu et d'Armangé. Aucune station ne jauge donc ce sous-ensemble de travail ;
- L'Aubance amont correspondant à l'amont de la masse d'eau de l'Aubance soumis à l'influence de la station hydrométrique de l'Aubance à Soulaines-sur-Aubance ;
- Le **Louet** qui correspond à l'aval de la masse d'eau de l'Aubance (situé en aval de la station de l'Aubance à Soulaines-sur-Aubance) et à la masse d'eau du Louet. . Aucune station ne jauge donc ce sous-ensemble de travail ;
- Le Lys, l'Hyrôme et l'Evre amont qui correspondent respectivement aux masses d'eau du Lys soumis à l'influence de la station du Lys à Aubigné-sur-Layon, de l'Hyrôme soumis à

l'influence de la station de l'Hyrôme à Saint-Lambert-du-Lattay et de l'Evre amont soumis à l'influence de l'Evre à Beaupréau ;

- Le **Beuvron amont** composé par l'amont de la masse d'eau du Beuvron soumis à l'influence de la station hydrométrique du Beuvron à Andrezé;
- L'Evre intermédiaire constitué par l'aval de la masse d'eau du Beuvron (situé en aval de la station du Beuvron à Andrezé), par l'amont de la masse d'eau de l'Evre soumis à l'influence de la station hydrométrique de l'Evre à la Chapelle-Saint-Florent et par les masses d'eau de l'Avresne, de l'Abriard, de la Trezenne;
- L'Evre aval constitué de l'aval de la masse d'eau de l'Evre aval (situé en aval de la station de l'Evre à la Chapelle-Saint-Florent) et par les masses d'eau du Pont-Laurent et du Moulin Moreau. Aucune station ne jauge donc ce sous-ensemble de travail;
- La Thau et les Moulins qui correspondent respectivement aux masses d'eau orphelines de la Thau et des Moulins.

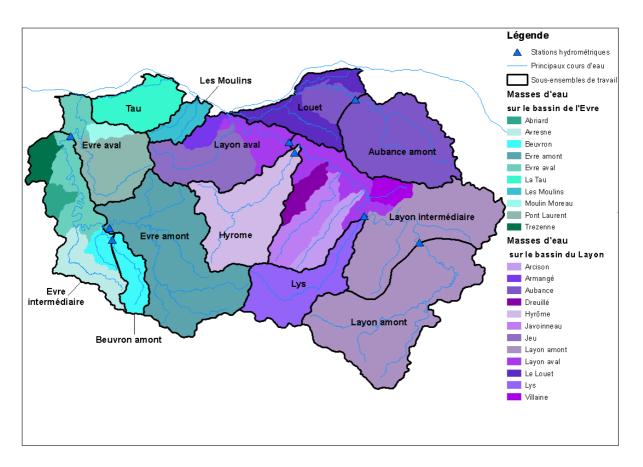


Figure 3–1 : Définition des sous-ensembles de travail

38

3.3 Mise en œuvre de la méthodologie sur chaque ensemble de masse d'eau

Les paragraphes suivants présentent pour chaque ensemble de masses d'eau les résultats de la méthodologie explicitée plus haut. Pour rappel, les volumes prélevables et débits de référence considèrent les rejets comme non prélevables. Les résultats chiffrés ci-après font état de deux scénarios de gestion des prélèvements: gestion individuelle et gestion collective. La gestion individuelle prévalant sur le territoire d'étude à l'heure actuelle, les graphiques ci-après ne sont représentés que pour ce mode de gestion des prélèvements. Par ailleurs, pour les masses d'eau qui ne sont pas en tête de bassin versant, les débits considérés pour établir les volumes prélevables intègrent de facto les volumes déjà prélevés sur le ou les sous-ensemble(s) en amont de ces masses d'eau.

3.3.1 Le Layon amont

3.3.1.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Volumes prélevés Gestion $10^3 \, \text{m}^3$ Individuelle Collective Nov 1999 - Mars 2000 3795 4007 Nov 2000 - Mars 2001 5060 5119 Nov 2001 - Mars 2002 1807 2053 Nov 2002 - Mars 2003 3831 3854 Nov 2003 - Mars 2004 2060 2415 Nov 2004 - Mars 2005 108 245 Nov 2005 - Mars 2006 1120 1458 Nov 2006 - Mars 2007 3939 4101 Nov 2007 - Mars 2008 1373 1692 Nov 2008 - Mars 2009 1193 1387 Nov 2009 - Mars 2010 3000 3204

Tableau 3-1: Volumes hivernaux prélevés – Layon amont

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

Unité Hydraulique Fluviale

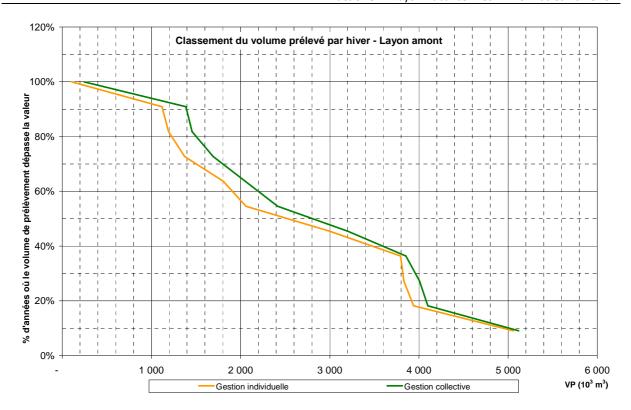


Figure 3–2 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon amont

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est VP_{0,2} (Gest_Ind) = 1 229 . 10³ m³.
- Le volume prélevable sur cette période en gestion collective est de VP_{0.2} (Gest_Coll) = 1 504 . 10³ m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.1.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-2 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Layon Amont

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.000	0.000	0.000	0.000	0.000
Qplancher basses eaux (m³/s)	0.105	0.105	0.105	0.105	0.105
Débit de prélèvement passif estival (m³/s)	-	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	-	-	-	-	-

3.3.1.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F Α Α S 0 J M M J Ν D **Total** Gestion 252 230 252 244 252 1 229 Volume individuelle prélevable Gestion (8/10)308 281 308 298 308 1 504 collective Volume passif prélèvement (8/10)Moyens 418 387 418 99 276 311 174 108 418 407 418 3 515 81 (2000 - 2010)Prélèvements historiques 2003 491 450 491 82 120 359 230 234 103 491 477 491 4 019 474 435 474 280 450 223 474 2009 90 91 103 461 474 4 031 Rejets 2010 139 125 139 112 116 112 116 116 112 139 134 139 1 498 historiques

Tableau 3-3: Volumes prélevables sur le Layon Amont

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

Une analyse plus poussée de ces résultats ainsi que de ceux relatifs aux autres ensembles de travail est présentée plus loin.

3.3.1.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	М	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.052	0.051	0.052	0.043	0.043	0.043	0.043	0.043	0.043	0.052	0.052	0.052
Qplancher basses eaux	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105
Qplancher hautes eaux	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046
Débits de référence	1.046	1.046	1.046	0.074	0.044	0.043	0.043	0.043	0.043	0.052	1.046	1.046

Tableau 3-4 : Calcul des débits d'objectif sur le Layon amont

Les débits d'objectif et volumes prélevables sont récapitulés sur les figures ci-dessous.

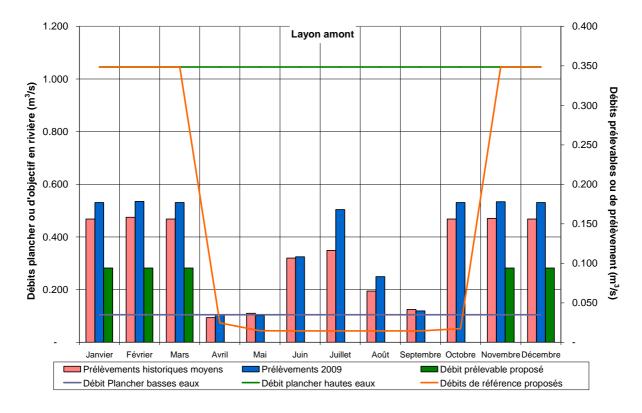


Figure 3–3 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon amont

3.3.2 L'Hyrôme

3.3.2.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-5: Volumes hivernaux prélevés – Hyrôme

Volumes prélevés	Gest	ion
10 ³ m ³	Individuelle	Collective
Nov 1999 - Mars 2000	3 770	3 944
Nov 2000 - Mars 2001	4 560	4 585
Nov 2001 - Mars 2002	1 216	1 779
Nov 2002 - Mars 2003	3 557	3 810
Nov 2003 - Mars 2004	2 554	3 059
Nov 2004 - Mars 2005	61	120
Nov 2005 - Mars 2006	821	1 119
Nov 2006 - Mars 2007	4 013	4 086
Nov 2007 - Mars 2008	851	1 374
Nov 2008 - Mars 2009	578	906
Nov 2009 - Mars 2010	3 010	3 381

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

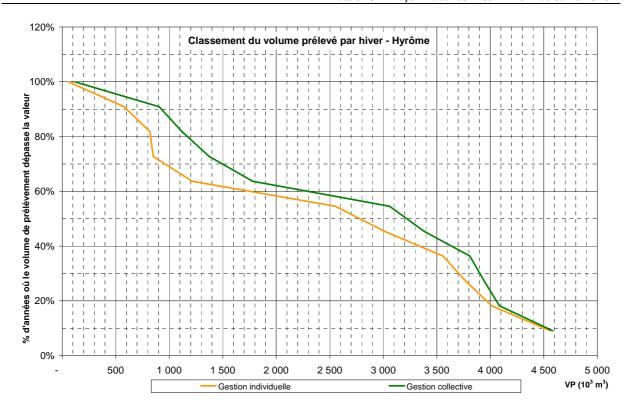


Figure 3–4 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Hyrôme

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est VP_{0,2} (Gest_Ind) = 827 . 10³ m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 1 170 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.2.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-6 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Hyrôme

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.139	0.078	0.044	0.027	0.031
Qplancher basses eaux (m³/s)	0.088	0.088	0.088	0.088	0.088
Débit de prélèvement passif estival (m³/s)	0.052	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	134	-	-	-	-

3.3.2.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F M S 0 J Α M J J Α Ν D **Total** Gestion 169 154 169 164 169 827 Volume individuelle prélevable Gestion (8/10)240 219 240 232 240 1 170 collective Volume passif prélèvement 134 134 (8/10)Moyens 236 215 236 17 35 209 246 108 41 236 228 236 2 043 (2000 - 2010)Prélèvements historiques 2003 276 249 276 17 56 310 173 178 39 276 267 276 2 392 266 240 266 221 403 159 266 257 2009 17 17 31 266 2 408 Rejets 2010 94 94 85 78 81 78 47 47 78 94 91 94 960 historiques

Tableau 3-7: Volumes prélevables sur l'Hyrôme

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, bien que le scénario de gestion des prélèvements en collectif s'en rapproche très fortement;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

Unité Hydraulique Fluviale

Une analyse plus poussée de ces résultats ainsi que de ceux relatifs aux autres ensembles de travail est présentée plus loin.

3.3.2.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.035	0.035	0.035	0.030	0.030	0.030	0.018	0.018	0.030	0.035	0.035	0.035
Qplancher basses eaux	0.088	0.088	0.088	0.088	0.088	0.088	0.088	0.088	0.088	0.088	0.088	0.088
Qplancher hautes eaux	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880
Débits de référence	0.880	0.880	0.880	0.412	0.260	0.170	0.096	0.062	0.057	0.066	0.880	0.880

Tableau 3-8 : Calcul des débits d'objectif sur l'Hyrôme

Les débits d'objectif et volumes prélevables sont récapitulés sur les figures ci-dessous.

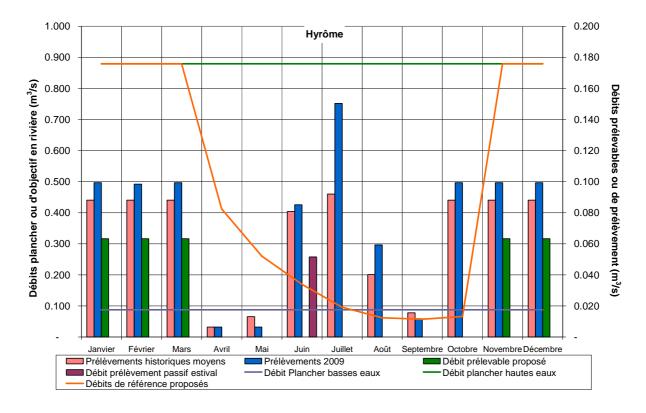


Figure 3–5 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Hyrôme

3.3.3 Le Lys

3.3.3.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-9: Volumes hivernaux prélevés – Lys

Volumes prélevés	Gest	ion
10 ^{3 m3}	Individuelle	Collective
Nov 1999 - Mars 2000	2 717	2 893
Nov 2000 - Mars 2001	3 885	4 006
Nov 2001 - Mars 2002	1 250	1 441
Nov 2002 - Mars 2003	2 744	2 821
Nov 2003 - Mars 2004	2 147	2 655
Nov 2004 - Mars 2005	842	1 022
Nov 2005 - Mars 2006	1 359	1 623
Nov 2006 - Mars 2007	2 636	2 874
Nov 2007 - Mars 2008	897	1 158
Nov 2008 - Mars 2009	1 032	1 309
Nov 2009 - Mars 2010	2 690	2 810

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

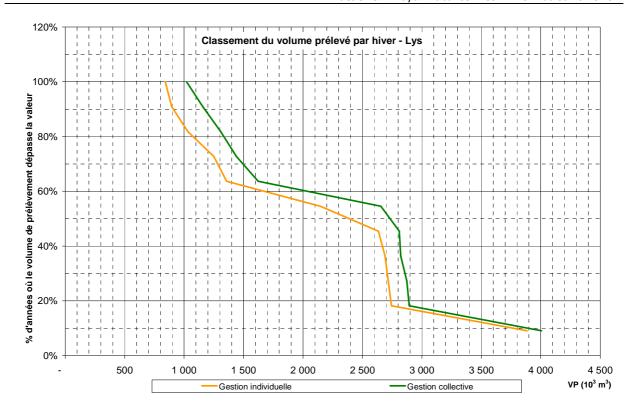


Figure 3-6: Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Lys

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 1 076 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de VP_{0,2} (Gest_Coll) = 1 335 . 10³ m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.3.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-10 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Lys

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.044	0.022	0.012	0.006	0.018
Qplancher basses eaux (m³/s)	0.079	0.079	0.079	0.079	0.079
Débit de prélèvement passif estival (m³/s)	-	-	-	-	-
Volume de prélèvement passif estival (10 ^{3 m3})	-	-	-	-	-

3.3.3.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F M M Α S 0 J Α J J Ν D **Total** Gestion 221 201 221 213 221 1 076 Volume individuelle prélevable Gestion (8/10)274 249 274 265 274 1 335 collective Volume passif prélèvement (8/10)Moyens 168 153 168 17 24 87 99 51 168 163 168 1 290 26 (2000 - 2010)Prélèvements historiques 2003 200 181 200 17 35 152 89 91 27 200 194 200 1 586 181 181 71 181 175 2009 164 17 17 120 55 20 181 1 363 Rejets 2010 64 55 64 58 53 55 53 55 53 64 62 64 701 historiques

Tableau 3-11: Volumes prélevables sur le Lys

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

Une analyse plus poussée de ces résultats ainsi que de ceux relatifs aux autres ensembles de travail est présentée plus loin.

3.3.3.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	M	J	J	Α	S	0	N	D
Qrejets (2010)	0.024	0.024	0.024	0.020	0.020	0.020	0.020	0.020	0.020	0.024	0.024	0.024
Qplancher basses eaux	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079
Qplancher hautes eaux	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786	0.786
Débits de référence	0.786	0.786	0.786	0.195	0.108	0.065	0.042	0.032	0.026	0.042	0.786	0.786

Tableau 3-12 : Calcul des débits d'objectif sur le Lys

Les débits d'objectif et volumes prélevables sont récapitulés sur les figures ci-dessous.

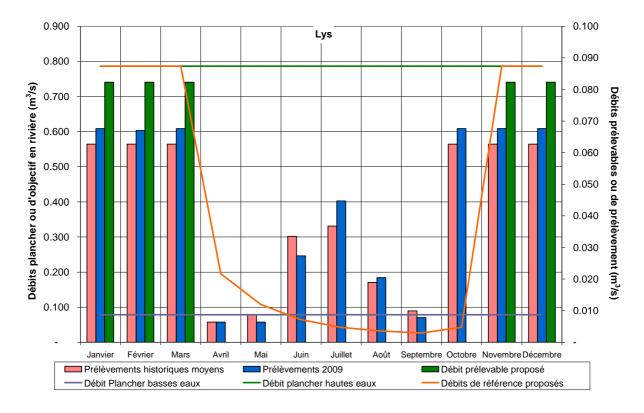


Figure 3–7 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Lys

3.3.4 Le Layon intermédiaire

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Layon amont, Lys, Hyrôme).

3.3.4.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-13: Volumes hivernaux prélevés – Layon intermédiaire

Volumes prélevés	Gest	ion
10 ^{3 m3}	Individuelle	Collective
Nov 1999 - Mars 2000	18 556	19 237
Nov 2000 - Mars 2001	22 815	22 958
Nov 2001 - Mars 2002	5 932	7 042
Nov 2002 - Mars 2003	16 883	17 839
Nov 2003 - Mars 2004	11 255	12 903
Nov 2004 - Mars 2005	152	240
Nov 2005 - Mars 2006	3 802	4 709
Nov 2006 - Mars 2007	17 948	19 095
Nov 2007 - Mars 2008	6 084	7 549
Nov 2008 - Mars 2009	4 259	5 031
Nov 2009 - Mars 2010	12 928	14 636

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

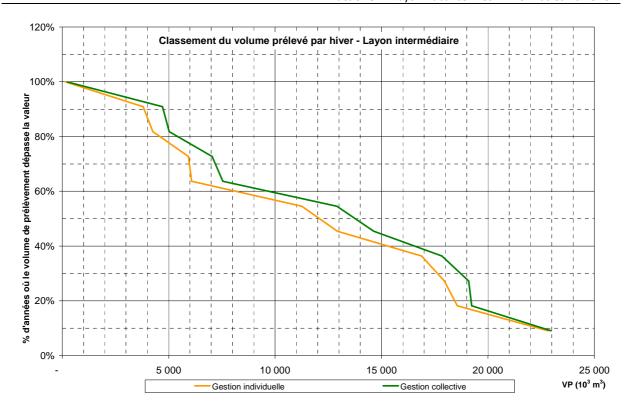


Figure 3–8 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon intermédiaire

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 4 593 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 5 433 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.4.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-14 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Layon intermédiaire

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.550	0.331	0.209	0.143	0.165
Qplancher basses eaux (m³/s)	0.440	0.440	0.440	0.440	0.440
Débit de prélèvement passif estival (m³/s)	0.110	-	-	-	-
Volume de prélèvement passif estival (10 ^{3 m3})	284	-	-	-	-

3.3.4.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F J M Α M J J Α S 0 Ν D **Total** Gestion 941 858 941 911 941 4 593 Volume individuelle prélevable Gestion (8/10)1 114 1 015 1 114 1 078 1 114 5 433 collective Volume passif prélèvement 284 284 (8/10)Moyens 404 368 404 86 126 491 579 280 140 404 391 404 4 080 (2000 - 2010)Prélèvements historiques 2003 462 417 462 88 170 676 404 412 132 462 447 462 4 595 428 386 428 480 362 110 428 2009 83 86 836 414 428 4 467 Rejets 2010 74 74 74 74 67 64 66 64 66 66 64 72 827 historiques

Tableau 3-15: Volumes prélevables sur le Layon intermédiaire

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

Une analyse plus poussée de ces résultats ainsi que de ceux relatifs aux autres ensembles de travail est présentée plus loin.

3.3.4.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	M	J	J	Α	S	0	N	D
Qrejets (2010)	0.028	0.027	0.028	0.025	0.025	0.025	0.025	0.025	0.025	0.028	0.028	0.028
Qplancher basses eaux	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440	0.440
Qplancher hautes eaux	4.401	4.401	4.401	4.401	4.401	4.401	4.401	4.401	4.401	4.401	4.401	4.401
Débits de référence	4.401	4.401	4.401	1.526	0.906	0.574	0.356	0.233	0.168	0.193	4.401	4.401

Tableau 3-16 : Calcul des débits d'objectif sur le Layon intermédiaire

Les débits d'objectif et volumes prélevables sont récapitulés sur les figures ci-dessous.

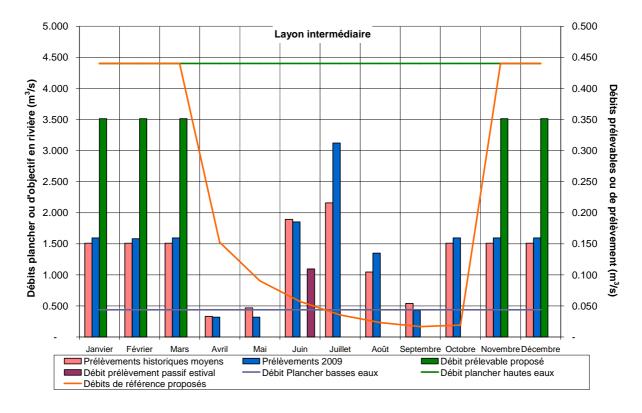


Figure 3–9 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon intermédiaire

3.3.5 Le Layon aval

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Layon amont, Lys, Hyrôme, Layon intermédiaire).

3.3.5.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-17: Volumes hivernaux prélevés – Layon aval

Volumes prélevés	Gestion					
10 ^{3 m3}	Individuelle	Collective				
Nov 1999 - Mars 2000	22 144	22 914				
Nov 2000 - Mars 2001	26 750	26 750				
Nov 2001 - Mars 2002	7 972	9 568				
Nov 2002 - Mars 2003	20 373	21 609				
Nov 2003 - Mars 2004	14 704	16 574				
Nov 2004 - Mars 2005	177	464				
Nov 2005 - Mars 2006	4 783	6 211				
Nov 2006 - Mars 2007	22 321	23 239				
Nov 2007 - Mars 2008	7 263	9 783				
Nov 2008 - Mars 2009	5 315	6 388				
Nov 2009 - Mars 2010	16 298	18 555				

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

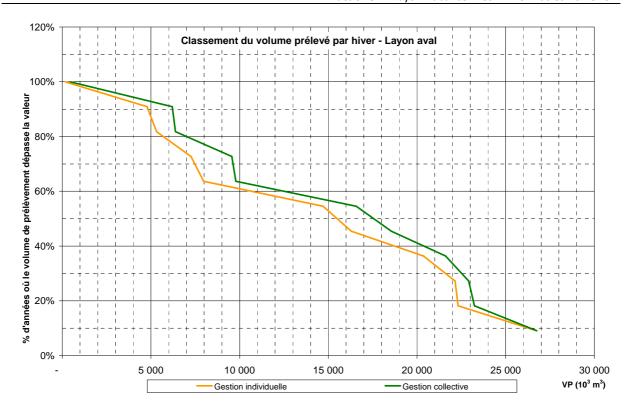


Figure 3–10 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon aval

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 5 704 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 7 024 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.5.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-18 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Layon aval

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.694	0.421	0.267	0.184	0.202
Qplancher basses eaux (m³/s)	0.513	0.513	0.513	0.513	0.513
Débit de prélèvement passif estival (m³/s)	0.181	-	-	-	-
Volume de prélèvement passif estival (10 ^{3 m3})	469	-	-	-	-

3.3.5.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F S M Α M J J Α 0 Ν D **Total** Gestion 1 169 1 065 1 169 1 131 1 169 5 704 Volume individuelle prélevable Gestion (8/10)1 440 1 312 1 440 1 393 | 1 440 | 7 024 collective Volume passif prélèvement 469 469 (8/10)Moyens 158 144 158 34 38 62 73 49 37 158 153 1 221 158 (2000 - 2010)Prélèvements historiques 2003 187 169 187 34 41 74 57 57 37 187 181 187 1 400 33 1 422 2009 181 164 181 34 75 114 64 36 181 176 181 Rejets 2010 38 34 38 27 28 27 28 28 27 38 37 38 388 historiques

Tableau 3-19 : Volumes prélevables sur le Layon aval

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé en juin est supérieur aux prélèvements historiques reconstitués sur l'ensemble de la période estivale.

Une analyse plus poussée de ces résultats ainsi que de ceux relatifs aux autres ensembles de travail est présentée plus loin.

3.3.5.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	M	J	J	Α	S	0	N	D
Qrejets (2010)	0.014	0.014	0.014	0.011	0.011	0.011	0.011	0.011	0.011	0.014	0.014	0.014
Qplancher basses eaux	0.513	0.513	0.513	0.513	0.513	0.513	0.513	0.513	0.513	0.513	0.513	0.513
Qplancher hautes eaux	5.126	5.126	5.126	5.126	5.126	5.126	5.126	5.126	5.126	5.126	5.126	5.126
Débits de référence	5.126	5.126	5.126	1.876	1.113	0.704	0.432	0.277	0.194	0.216	5.126	5.126

Tableau 3-20 : Calcul des débits d'objectif sur le Layon aval

Les débits d'objectif et volumes prélevables sont récapitulés sur les figures ci-dessous.

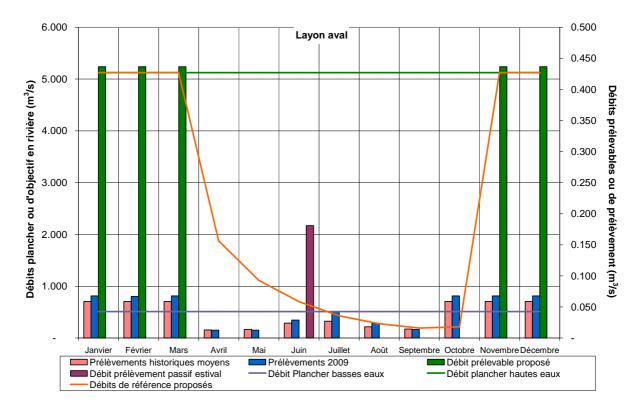


Figure 3–11 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Layon aval

3.3.6 L'Aubance amont

3.3.6.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-21: Volumes hivernaux prélevés – Aubance amont

Volumes prélevés	Gestion					
10 ^{3 m3}	Individuelle	Collective				
Nov 1999 - Mars 2000	2 258	2 493				
Nov 2000 - Mars 2001	3 087	3 096				
Nov 2001 - Mars 2002	704	876				
Nov 2002 - Mars 2003	2 424	2 728				
Nov 2003 - Mars 2004	1 782	1 992				
Nov 2004 - Mars 2005	21	39				
Nov 2005 - Mars 2006	435	570				
Nov 2006 - Mars 2007	2 569	2 649				
Nov 2007 - Mars 2008	808	1 006				
Nov 2008 - Mars 2009	601	737				
Nov 2009 - Mars 2010	1 077	1 229				

Ces volumes prélevés chaque hiver sont ensuite triées. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

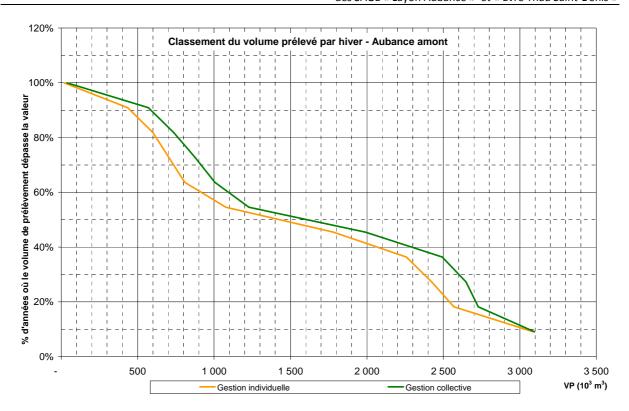


Figure 3–12 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Aubance amont

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 622 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 765 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

3.3.6.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-22 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Aubance amont

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.087	0.060	0.041	0.029	0.027
Qplancher basses eaux (m³/s)	0.060	0.060	0.060	0.060	0.060
Débit de prélèvement passif estival (m³/s)	0.027	0.000	-	-	-
Volume de prélèvement passif estival (10 ^{3 m3})	70	0.9	-	-	-

3.3.6.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F S J M Α M J Α Ν D **Total** Gestion Volume individuelle prélevable Gestion (8/10)collective Volume passif prélèvement (8/10)Moyens 1 257 Prélèvements (2000 - 2010) historiques 1 386 1 456 Rejets historiques

Tableau 3-23 : Volumes prélevables sur l'Aubance amont

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, en gestion des prélèvements collective. En gestion individuelle, les volumes prélevables ne permettent pas tout à fait de satisfaire les prélèvements passés mais s'en rapprochent;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

3.3.6.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.033	0.033	0.033	0.028	0.028	0.028	0.028	0.028	0.028	0.033	0.033	0.033
Qplancher basses eaux	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060
Qplancher hautes eaux	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600
Débits de référence	0.600	0.600	0.600	0.208	0.165	0.115	0.089	0.070	0.057	0.060	0.600	0.600

Tableau 3-24 : Calcul des débits d'objectif sur l'Aubance amont

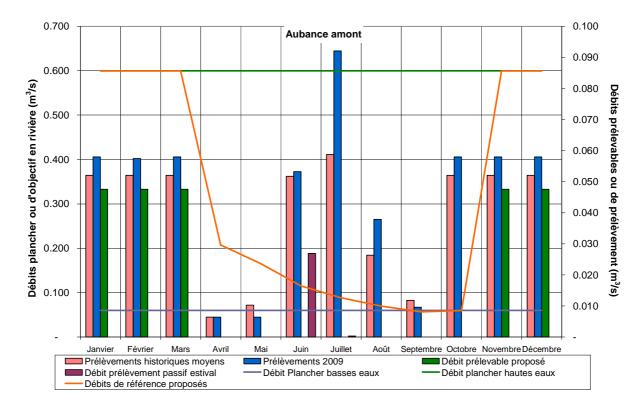


Figure 3–13 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Aubance amont

3.3.7 Le Louet

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Aubance amont).

3.3.7.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-25 : Volumes hivernaux prélevés - Louet

Volumes prélevés	Gestion				
10 ³ m ³	Individuelle	Collective			
Nov 1999 - Mars 2000	3 760	4 032			
Nov 2000 - Mars 2001	5 207	5 304			
Nov 2001 - Mars 2002	832	1 200			
Nov 2002 - Mars 2003	4 375	4 709			
Nov 2003 - Mars 2004	3 001	3 407			
Nov 2004 - Mars 2005	-	-			
Nov 2005 - Mars 2006	506	701			
Nov 2006 - Mars 2007	4 592	4 773			
Nov 2007 - Mars 2008	1 952	2 690			
Nov 2008 - Mars 2009	1 085	1 387			
Nov 2009 - Mars 2010	2 712	3 276			

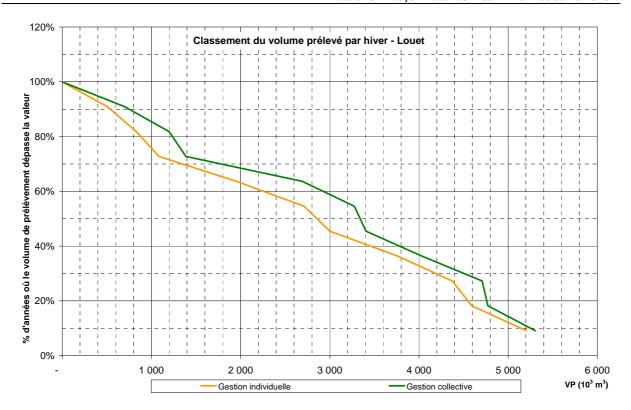


Figure 3–14 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Louet

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 882 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 1 237 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

3.3.7.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-26 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Louet

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.183	0.121	0.080	0.056	0.052
Qplancher basses eaux (m³/s)	0.105	0.105	0.105	0.105	0.105
Débit de prélèvement passif estival (m³/s)	0.079	0.016	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	204	43.1	-	-	-

3.3.7.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F Α S J M Α M J J Ν D **Total** Gestion Volume individuelle prélevable Gestion (8/10)1 237 collective Volume passif prélèvement (8/10)Moyens Prélèvements (2000 - 2010) historiques Rejets 1 420 historiques

Tableau 3-27 : Volumes prélevables sur le Louet

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé en juin et juillet est supérieur aux prélèvements historiques reconstitués sur l'ensemble de la période estivale.

3.3.7.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.049	0.048	0.049	0.041	0.041	0.041	0.041	0.041	0.041	0.049	0.049	0.049
Qplancher basses eaux	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105
Qplancher hautes eaux	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046	1.046
Débits de référence	1.046	1.046	1.046	0.424	0.317	0.225	0.162	0.122	0.098	0.101	1.046	1.046

Tableau 3-28 : Calcul des débits d'objectif sur le Louet

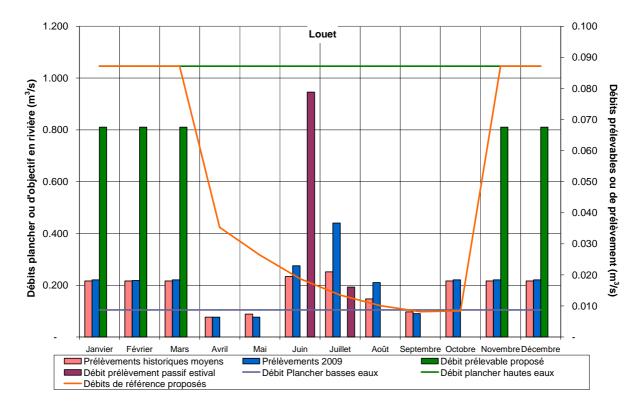


Figure 3–15 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Louet

3.3.8 Les Moulins

3.3.8.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-29 : Volumes hivernaux prélevés - Les Moulins

Volumes prélevés	Gestion				
10 ³ m ³	Individuelle	Collective			
Nov 1999 - Mars 2000	673	678			
Nov 2000 - Mars 2001	776	776			
Nov 2001 - Mars 2002	339	420			
Nov 2002 - Mars 2003	632	647			
Nov 2003 - Mars 2004	442	503			
Nov 2004 - Mars 2005	5	24			
Nov 2005 - Mars 2006	118	148			
Nov 2006 - Mars 2007	678	681			
Nov 2007 - Mars 2008	241	316			
Nov 2008 - Mars 2009	159	180			
Nov 2009 - Mars 2010	509	539			

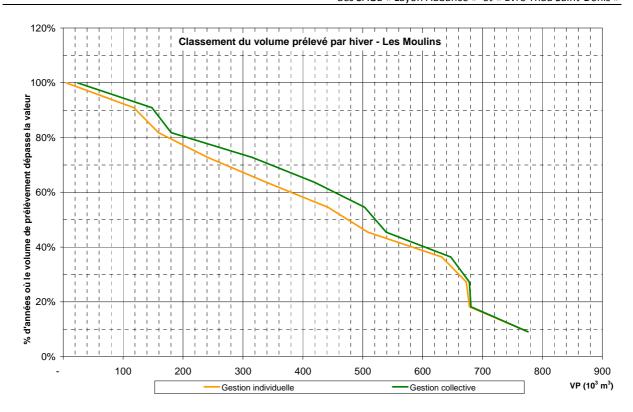


Figure 3–16 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur les Moulins

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 176 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 207 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

Le volume prélevable est calculé à l'échelle de la période hivernale (novembre à mars) mais est réparti mois par mois sur la base d'un prélèvement homogène sur l'ensemble de la période.

68

3.3.8.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-30 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur les Moulins

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.011	0.006	0.003	0.001	0.001
Qplancher basses eaux (m³/s)	0.015	0.015	0.015	0.015	0.015
Débit de prélèvement passif estival (m³/s)	-	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	-	-	-	-	-

3.3.8.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F M S 0 J Α M J J Α Ν D **Total** Gestion 36 33 36 35 36 176 Volume individuelle prélevable Gestion (8/10)43 39 43 41 43 207 collective Volume passif prélèvement (8/10)Moyens 86 79 86 18 20 32 34 26 20 86 84 86 657 (2000 - 2010)Prélèvements historiques 2003 102 92 102 18 24 62 42 42 21 102 99 102 809 85 19 41 27 705 2009 94 94 18 30 19 94 91 94 Rejets 2010 4 4 4 5 5 5 49 historiques

Tableau 3-31: Volumes prélevables sur les Moulins

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

3.3.8.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Qplancher basses eaux	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
Qplancher hautes eaux	0.149	0.149	0.149	0.149	0.149	0.149	0.149	0.149	0.149	0.149	0.149	0.149
Débits de référence	0.149	0.149	0.149	0.051	0.024	0.013	0.007	0.004	0.003	0.003	0.149	0.149

Tableau 3-32 : Calcul des débits d'objectif sur les Moulins

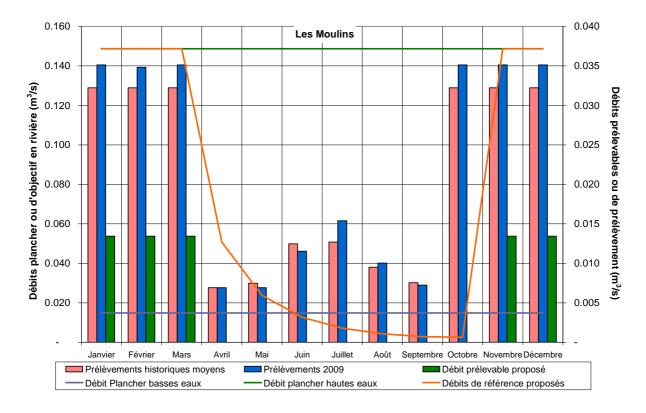


Figure 3–17 : Graphique de synthèse des débits prélevables et débits de référence proposés pour les Moulins

3.3.9 La Thau

3.3.9.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-33 : Volumes hivernaux prélevés - Thau

Volumes prélevés	Gestion				
10 ³ m ³	Individuelle	Collective			
Nov 1999 - Mars 2000	1 988	2 033			
Nov 2000 - Mars 2001	2 441	2 441			
Nov 2001 - Mars 2002	938	1 231			
Nov 2002 - Mars 2003	1 988	2 041			
Nov 2003 - Mars 2004	1 633	1 868			
Nov 2004 - Mars 2005	ı	14			
Nov 2005 - Mars 2006	339	406			
Nov 2006 - Mars 2007	2 150	2 157			
Nov 2007 - Mars 2008	1 035	1 336			
Nov 2008 - Mars 2009	517	688			
Nov 2009 - Mars 2010	1 746	1 836			

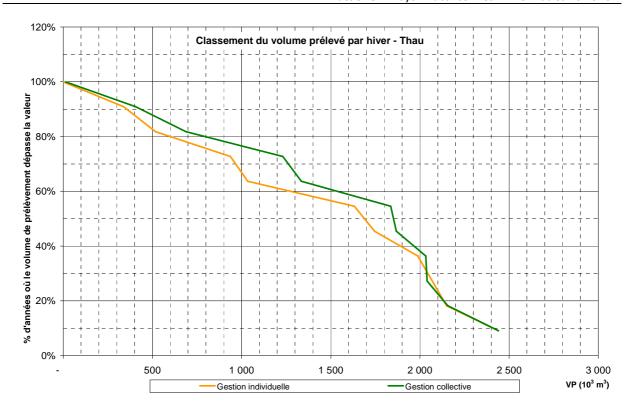


Figure 3–18 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur la Thau

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = $601 \cdot 10^3$ m³.
- Le volume prélevable sur cette période en gestion collective est de VP_{0.2} (Gest_Coll) = 797 . 10³ m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues. A noter que le pourcentage d'années où le volume de prélèvement dépasse 2 millions de m³ est plus important en gestion individuelle qu'en gestion collective. Ce constat pourrait paraître étonnant mais est dû à un effet de représentation graphique. Effectivement, moins d'années dépassent les forts volumes en gestion individuelle et un effet de lissage a lieu car très peu de points sont présents sur cette partie de la courbe. Des cassures plus marquées liées à une présence de points plus importante figurent sur la courbe de la gestion collective. Ce phénomène très local d'interpolation explique donc cette inversion de courbe.

3.3.9.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-34 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur la Thau

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.034	0.017	0.009	0.004	0.003
Qplancher basses eaux (m³/s)	0.047	0.047	0.047	0.047	0.047
Débit de prélèvement passif estival (m³/s)	-	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	-	-	-	-	-

3.3.9.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F M S J Α M J Α Ν D **Total** Gestion Volume individuelle prélevable Gestion (8/10)collective Volume passif prélèvement (8/10)Moyens 1 522 (2000 - 2010)Prélèvements historiques 1 664 Rejets historiques

Tableau 3-35 : Volumes prélevables sur la Thau

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

3.3.9.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.014	0.013	0.014	0.012	0.012	0.012	0.012	0.012	0.012	0.014	0.014	0.014
Qplancher basses eaux	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047
Qplancher hautes eaux	0.468	0.468	0.468	0.468	0.468	0.468	0.468	0.468	0.468	0.468	0.468	0.468
Débits de référence	0.468	0.468	0.468	0.181	0.082	0.046	0.029	0.021	0.016	0.017	0.468	0.468

Tableau 3-36 : Calcul des débits d'objectif sur la Thau

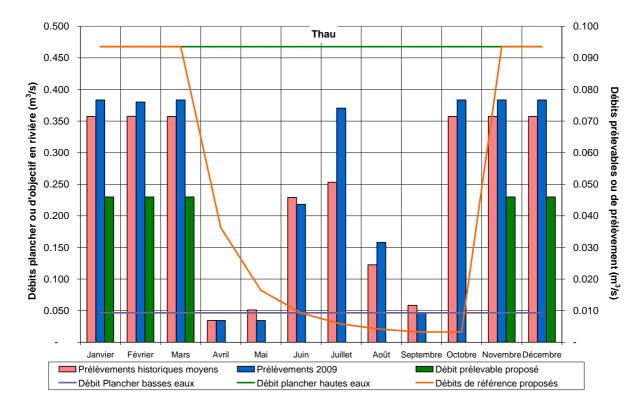


Figure 3–19 : Graphique de synthèse des débits prélevables et débits de référence proposés pour la Thau

3.3.10 L'Evre amont

3.3.10.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-37 : Volumes hivernaux prélevés – Evre amont

Volumes prélevés	Gestion				
10 ³ m ³	Individuelle	Collective			
Nov 1999 - Mars 2000	9 484	9 750			
Nov 2000 - Mars 2001	10 688	10 688			
Nov 2001 - Mars 2002	5 379	6 067			
Nov 2002 - Mars 2003	9 060	9 395			
Nov 2003 - Mars 2004	6 370	7 917			
Nov 2004 - Mars 2005	ı	531			
Nov 2005 - Mars 2006	1 840	3 608			
Nov 2006 - Mars 2007	9 484	9 498			
Nov 2007 - Mars 2008	2 760	4 032			
Nov 2008 - Mars 2009	2 336	3 386			
Nov 2009 - Mars 2010	7 786	8 351			

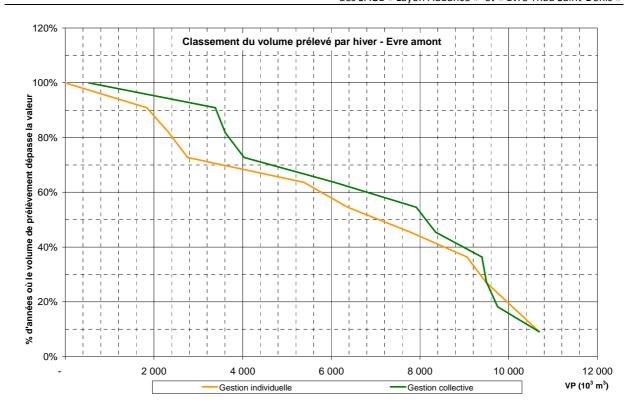


Figure 3–20 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre amont

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0.2}$ (Gest_Ind) = 2 350 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de VP_{0.2} (Gest_Coll) = 3 526 . 10³ m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues. A noter que le pourcentage d'années où le volume de prélèvement dépasse 9 millions de m³ est plus important en gestion individuelle qu'en gestion collective. Ce constat pourrait paraître étonnant mais est dû à un effet de représentation graphique. Effectivement, moins d'années dépassent les forts volumes en gestion individuelle et un effet de lissage a lieu car très peu de points sont présents sur cette partie de la courbe. Des cassures plus marquées liées à une présence de points plus importante figurent sur la courbe de la gestion collective. Ce phénomène très local d'interpolation explique donc cette inversion de courbe.

3.3.10.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-38 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Evre amont

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.222	0.106	0.057	0.037	0.113
Qplancher basses eaux (m³/s)	0.205	0.205	0.205	0.205	0.205
Débit de prélèvement passif estival (m³/s)	0.017	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	45	-	-	-	-

3.3.10.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F S 0 J M Α M J J Α Ν D **Total** Gestion 496 452 496 480 496 2 421 Volume individuelle prélevable Gestion (8/10)757 690 757 732 757 3 693 collective Volume passif prélèvement 45 45 (8/10)Moyens 416 380 416 20 46 310 362 156 58 416 403 416 3 401 (2000 - 2010)Prélèvements historiques 2003 459 415 459 20 81 470 260 267 54 459 444 459 3 847 451 499 22 295 212 499 483 499 2009 499 22 540 40 4 063 Rejets 2010 112 101 112 100 104 100 104 104 100 112 108 112 1 268 historiques

Tableau 3-39 : Volumes prélevables sur l'Evre amont

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le mode de gestion de prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

3.3.10.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.042	0.041	0.042	0.039	0.039	0.039	0.039	0.039	0.039	0.042	0.042	0.042
Qplancher basses eaux	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205
Qplancher hautes eaux	2.048	2.048	2.048	2.048	2.048	2.048	2.048	2.048	2.048	2.048	2.048	2.048
Débits de référence	2.048	2.048	2.048	0.900	0.507	0.261	0.145	0.096	0.076	0.155	2.048	2.048

Tableau 3-40 : Calcul des débits d'objectif sur l'Evre amont

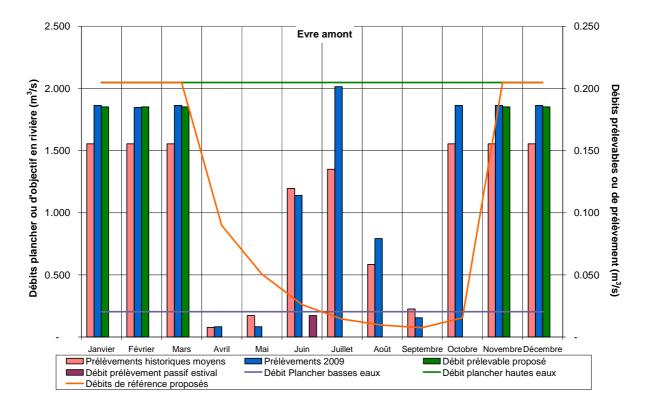


Figure 3–21 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre amont

3.3.11 Le Beuvron amont

3.3.11.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-41 : Volumes hivernaux prélevés – Beuvron amont

Volumes prélevés	Gest	ion
10 ³ m ³	Individuelle	Collective
Nov 1999 - Mars 2000	1 141	1 262
Nov 2000 - Mars 2001	1 690	1 690
Nov 2001 - Mars 2002	873	1 110
Nov 2002 - Mars 2003	1 410	1 444
Nov 2003 - Mars 2004	918	1 110
Nov 2004 - Mars 2005	-	24
Nov 2005 - Mars 2006	302	475
Nov 2006 - Mars 2007	1 488	1 491
Nov 2007 - Mars 2008	481	777
Nov 2008 - Mars 2009	403	609
Nov 2009 - Mars 2010	1 153	1 249

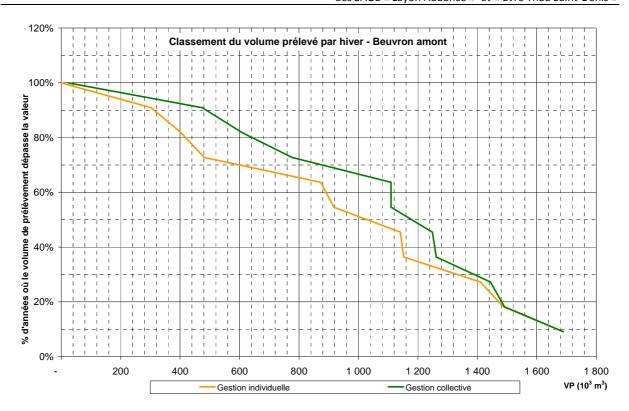


Figure 3–22 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Beuvron amont

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est VP_{0,2} (Gest_Ind) = 419 . 10³ m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 643 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

3.3.11.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-42 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur le Beuvron amont

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.051	0.029	0.018	0.011	0.013
Qplancher basses eaux (m³/s)	0.032	0.032	0.032	0.032	0.032
Débit de prélèvement passif estival (m³/s)	0.019	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	49	-	-	-	-

3.3.11.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F S J M Α M J Α Ν D **Total** Gestion Volume individuelle prélevable Gestion (8/10)collective Volume passif prélèvement (8/10)Moyens Prélèvements (2000 - 2010) historiques 1 028 Rejets historiques

Tableau 3-43 : Volumes prélevables sur le Beuvron amont

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, en gestion des prélèvements collective. En gestion individuelle, les volumes prélevables ne permettent pas tout à fait de satisfaire les prélèvements passés;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

3.3.11.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.019	0.019	0.019	0.017	0.017	0.017	0.017	0.017	0.017	0.019	0.019	0.019
Qplancher basses eaux	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
Qplancher hautes eaux	0.324	0.324	0.324	0.324	0.324	0.324	0.324	0.324	0.324	0.324	0.324	0.324
Débits de référence	0.324	0.324	0.324	0.169	0.107	0.068	0.046	0.035	0.028	0.032	0.324	0.324

Tableau 3-44 : Calcul des débits d'objectif sur le Beuvron amont

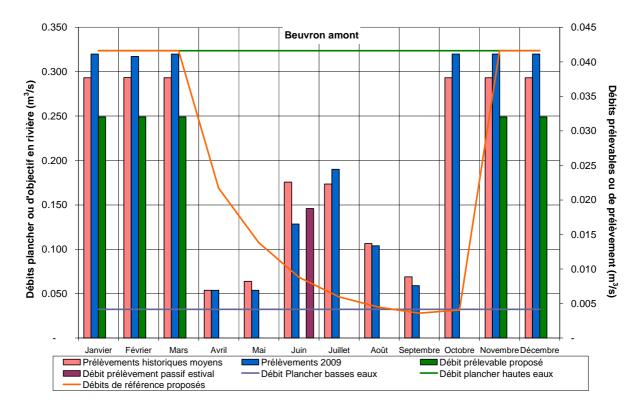


Figure 3–23 : Graphique de synthèse des débits prélevables et débits de référence proposés pour le Beuvron amont

3.3.12 L'Evre intermédiaire

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Evre amont, Beuvron amont).

3.3.12.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-45 : Volumes hivernaux prélevés Evre intermédiaire

Volumes prélevés	Gest	ion
10 ³ m ³	Individuelle	Collective
Nov 1999 - Mars 2000	13 553	15 192
Nov 2000 - Mars 2001	18 775	18 775
Nov 2001 - Mars 2002	8 331	9 757
Nov 2002 - Mars 2003	14 672	15 665
Nov 2003 - Mars 2004	9 947	11 508
Nov 2004 - Mars 2005	-	18
Nov 2005 - Mars 2006	1 865	2 847
Nov 2006 - Mars 2007	16 413	16 527
Nov 2007 - Mars 2008	4 352	6 410
Nov 2008 - Mars 2009	3 482	4 521
Nov 2009 - Mars 2010	12 683	13 596

Unité Hydraulique Fluviale

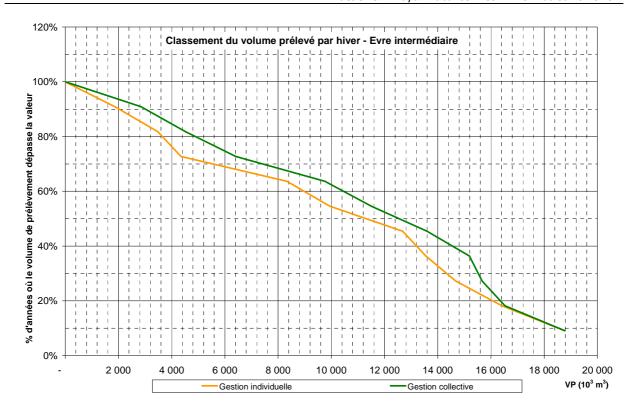


Figure 3–24 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre intermédiaire

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est VP_{0,2} (Gest_Ind) = 3 656 . 10³ m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = 4 899 . 10^3 m³.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

3.3.12.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-46 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Evre intermédiaire

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.394	0.197	0.107	0.067	0.146
Qplancher basses eaux (m³/s)	0.360	0.360	0.360	0.360	0.360
Débit de prélèvement passif estival (m³/s)	0.034	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	88	-	-	-	-

3.3.12.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F S J M Α M J J Α 0 Ν D **Total** Gestion 749 683 749 725 749 3 656 Volume individuelle prélevable Gestion (8/10)1 004 1 004 1 004 4 899 915 972 collective Volume passif prélèvement 88 88 (8/10)Moyens 496 452 496 73 88 229 249 150 93 496 480 496 3 798 (2000 - 2010)Prélèvements historiques 2003 577 521 577 74 119 397 248 253 98 577 559 577 4 578 512 72 150 567 2009 567 567 74 181 281 79 549 567 4 167 Rejets 2010 212 191 212 189 187 175 181 181 181 203 205 212 2 326 historiques

Tableau 3-47 : Volumes prélevables sur l'Evre intermédiaire

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

3.3.12.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.079	0.078	0.079	0.073	0.070	0.067	0.067	0.067	0.070	0.076	0.079	0.079
Qplancher basses eaux	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360
Qplancher hautes eaux	3.598	3.598	3.598	3.598	3.598	3.598	3.598	3.598	3.598	3.598	3.598	3.598
Débits de référence	3.598	3.598	3.598	1.598	0.876	0.461	0.265	0.174	0.137	0.221	3.598	3.598

Tableau 3-48 : Calcul des débits d'objectif sur l'Evre intermédiaire

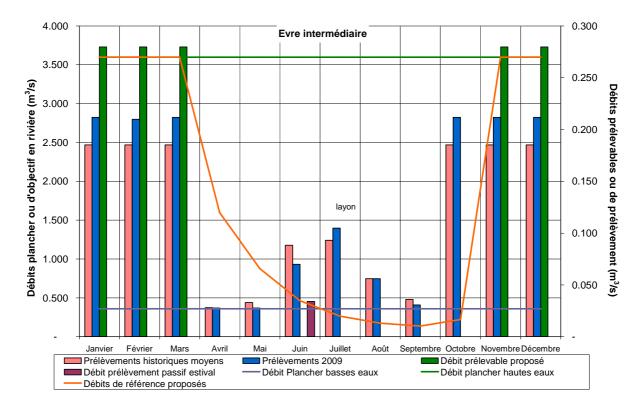


Figure 3–25 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre intermédiaire

3.3.13 L'Evre aval

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Evre amont, Beuvron amont, Evre intermédiaire).

3.3.13.1 Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 3-49 : Volumes hivernaux prélevés – Evre aval

Volumes prélevés	Gest	ion
10 ³ m ³	Individuelle	Collective
Nov 1999 - Mars 2000	12 960	15 607
Nov 2000 - Mars 2001	23 023	23 023
Nov 2001 - Mars 2002	7 014	8 698
Nov 2002 - Mars 2003	17 381	17 762
Nov 2003 - Mars 2004	9 910	12 362
Nov 2004 - Mars 2005	-	6
Nov 2005 - Mars 2006	1 372	2 093
Nov 2006 - Mars 2007	17 534	19 597
Nov 2007 - Mars 2008	3 812	5 725
Nov 2008 - Mars 2009	3 507	4 337
Nov 2009 - Mars 2010	12 502	14 333

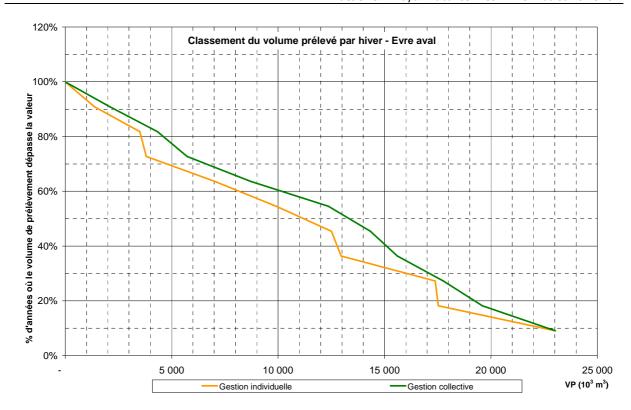


Figure 3–26 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre

A la lecture du graphique ci-dessus, il ressort que :

- Le volume prélevable sur cette période en gestion individuelle est $VP_{0,2}$ (Gest_Ind) = 3 568 . 10^3 m³.
- Le volume prélevable sur cette période en gestion collective est de $VP_{0,2}$ (Gest_Coll) = $4.615 \cdot 10^3 \text{ m}^3$.

Le volume qu'il est possible de prélever est donc plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues.

3.3.13.2 Calcul du volume de prélèvement passif par les plans d'eau en période estivale

Ce prélèvement passif est calculé selon les modalités présentées précédemment. Les valeurs caractéristiques considérées sont présentées dans le tableau ci-dessous.

Tableau 3-50 : Calcul du volume de prélèvement passif par les plans d'eau maximal en période estivale sur l'Evre aval

	Juin	Juillet	Août	Septembre	Octobre
QM _{0,2} (m ³ /s)	0.455	0.228	0.123	0.076	0.154
Qplancher basses eaux (m³/s)	0.441	0.441	0.441	0.441	0.441
Débit de prélèvement passif estival (m³/s)	0.014	-	-	-	-
Volume de prélèvement passif estival (10 ³ m ³)	37	-	-	-	-

3.3.13.3 Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (10³ m³) F Α S J M Α M J J 0 Ν D **Total** Gestion 731 666 731 708 731 3 568 Volume individuelle prélevable Gestion (8/10)946 862 946 915 946 4 615 collective Volume passif prélèvement 37 37 (8/10)Moyens 240 219 240 37 48 133 150 82 48 240 233 240 1 911 (2000 - 2010)Prélèvements historiques 2003 284 256 284 37 242 147 150 284 275 284 2 360 66 52 267 241 267 37 130 103 267 2009 38 215 43 258 267 2 133 Rejets 2010 54 49 49 54 54 49 51 51 51 49 52 54 617 historiques

Tableau 3-51 : Volumes prélevables sur l'Evre aval

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

3.3.13.4 Propositions de débit d'objectif

Les débits d'objectif sont calculés mois par mois selon les modalités décrites précédemment dans le rapport. Étant donné que le calcul des débits d'objectif ne fait pas intervenir de volumes prélevables à ce stade, ils sont identiques pour les deux scénarios de gestion des prélèvements envisagés et sont présentés dans le tableau ci-dessous.

m3/s	J	F	M	Α	М	J	J	Α	S	0	N	D
Qrejets (2010)	0.020	0.020	0.020	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020
Qplancher basses eaux	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441
Qplancher hautes eaux	4.412	4.412	4.412	4.412	4.412	4.412	4.412	4.412	4.412	4.412	4.412	4.412
Débits de référence	4.412	4.412	4.412	1.845	0.951	0.474	0.247	0.142	0.095	0.174	4.412	4.412

Tableau 3-52 : Calcul des débits d'objectif sur l'Evre aval

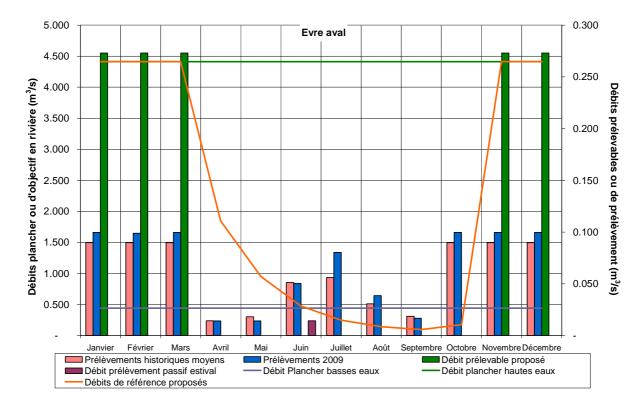


Figure 3–27 : Graphique de synthèse des débits prélevables et débits de référence proposés pour l'Evre aval

3.4 Conclusions

La méthodologie retenue a été appliquée à des sous-ensembles de masses d'eau jaugées par des stations hydrométriques ou à des sous-ensembles de masses d'eau orphelines quand aucune station de suivi des débits n'était présente. Ces sous-ensembles de travail sont au nombre de 13, dont 5 sont soumis aux influences des prélèvements/rejets d'autres sous-ensembles situés en amont.

La méthode déroulée considère que les rejets ne sont pas prélevables en période estivale dans un souci de maintien de la qualité de l'eau par dilution de ces rejets. Sur la période hivernale en revanche, les rejets ont été intégrés aux écoulements en cours d'eau pour la définition des volumes prélevables (et ont donc été considérés prélevables).

Sur cette base, deux types de calculs ont été menés, l'un pour estimer les volumes prélevés passivement par les plans d'eau en été et l'autre afin de déterminer les volumes prélevables en hiver. En été (juin à octobre), il n'y a pas de prélèvements autorisés. En saison intermédiaire (avril et mai), les prélèvements ne sont pas autorisés par défaut. Des dérogations pourraient être mises en place en cas d'année à période hivernale défavorable et printanière favorable (hiver sec suivi d'un printemps pluvieux). Pour la période hivernale (novembre à mars), deux modes de gestion des prélèvements ont été envisagés : gestion individuelle ou collective.

Les volumes prélevables en gestion collective ont été affichés et permettent d'envisager des volumes de prélèvement plus importants. Néanmoins, seuls les résultats liés à la gestion individuelle, majoritaire sur le territoire d'étude, ont été synthétisés graphiquement.

En été et sur la saison intermédiaire (avril à octobre), les prélèvements ne sont pas autorisés par défaut. Aussi, il peut être proposé d'améliorer la gestion saisonnière des prélèvements par la déconnexion des plans d'eau du réseau hydrographique, voir leur suppression. Cela consiste à diminuer la crise estivale lié au tarissement des débits en prélevant en avance en hiver des volumes qui seront utilisés en été.

Par ailleurs, les résultats montrent que les volumes prélevables calculés par la méthodologie décrite précédemment ne permettent pas de satisfaire les prélèvements historiques moyens. Ce constat est plus nuancé si le mode de gestion des prélèvements s'oriente vers du collectif. A noter que sur ces secteurs, et notamment sur les têtes de bassin, les milieux sont généralement sensibles et les équilibres des milieux y sont généralement fragiles. A ce titre, il convient de s'interroger sur l'impact de prélèvements potentiellement trop importants sur ces secteurs, et donc de la potentialité de les réduire (sachant que cela n'est pas exigé par le nouveau projet de SDAGE).

Sur les ensembles de masses d'eau « aval » soumises à l'influence d'ensembles de masses d'eau en amont, ce constat n'est pas le même. Les volumes prélevables satisfont de loin les besoins passés.

Aussi, outre la gestion saisonnière des prélèvements, une gestion spatiale de ceux-ci est peut-être à envisager. En effet, bien que les masses d'eau amont n'aient pas les ressources suffisantes pour satisfaire leurs besoins, ces ressources sont présentes sur le territoire considéré à une échelle plus globale et d'autant plus si la gestion des prélèvements s'oriente vers un mode collectif. Le tableau cidessous illustre ce propos.

Tableau 3-53 : Bilan annuel des volumes prélevables proposés et des besoins historiques sur les différents sous-ensembles de masses d'eau de travail

	VOLUM	ES ANNUE	LS PREL	EVABLES (10 ³ m ³)	
Sous-ensemble de masses d'eau	Influence amont ?	VP gestion individuelle	VP gestion collective	Prélèvements historiques	Déficit global en gestion individuelle ?	Déficit global en gestion collective ?
Layon amont	Non	1 229	1 504	3 515	Oui	Oui
Hyrome	Non	827	1 170	2 043	Oui	Oui
Lys	Non	1 076	1 335	1 290	Oui	Non
Layon intermédiaire	Oui	4 593	5 433	4 080	Non	Non
Layon aval	Oui	5 704	7 024	1 221	Non	Non
LAYON		13 429	16 468	12 149	Non	Non
Aubance amont	Non	622	765	1 257	Oui	Oui
Louet	Oui	882	1 237	481	Non	Non
LOUET		1 504	2 002	1 737	Oui	Non
LAYON GLO	BAL	14 933	18 470	13 886	Non	Non
Evre amont	Non	2 421	3 693	3 401	Oui	Non
Beuvron amont	Non	418	643	811	Oui	Oui
Evre intermédiaire	Oui	3 656	4 899	3 798	Oui	Non
Evre aval	Oui	3 568	4 615	1 911	Non	Non
EVRE		10 062	13 849	9 921	Non	Non
Moulins	Non	176	207	657	Oui	Oui
Tau	Non	601	797	1 522	Oui	Oui
EVRE GLO	BAL	10 840	14 853	12 100	Oui	Non

4

Annexes - Calcul des volumes prélevables pour un seuil haut hivernal égal à 1,6 x le module

Les paragraphes suivants présentent pour chaque ensemble de masses d'eau les résultats de la méthodologie explicitée précédemment pour un seuil maximum de prélèvement correspondant à 1,6 x le module.

Les volumes prélevables et débits de référence considèrent les rejets hivernaux comme prélevables. Les rejets considérés à cette fin sont ceux de 2010. Ils sont établis sur la base des rejets mensuels répartis uniformément en chronique journalière. Ces chroniques journalières sont établies par bassin et ajoutées aux débits présents en rivière sur lesquels repose la méthodologie développée.

Les résultats chiffrés ci-après font état de deux scénarios de gestion des prélèvements : gestion individuelle et gestion collective, la première prévalant à l'heure actuelle sur le territoire d'étude.

Par ailleurs, pour les masses d'eau qui ne sont pas en tête de bassin versant, les débits considérés pour établir les volumes prélevables font état des volumes déjà prélevés en amont de ces masses d'eau.

Les prélèvements passifs par les plans d'eau en période estivale ainsi que les propositions de débits de référence ne sont pas modifiés par ce changement de scénario et ne sont donc pas actualisés dans les paragraphes qui suivent.

ANNEXE 1 LAYON AMONT

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-1: Comparaison des volumes hivernaux prélevés – Layon amont

Volumes prélevés	SC 1,6		SC 1,4		SC 1,4 -> SC 1,6	
volumes preieves	Gestion		Gestion		Gestion	
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective
Nov 1999 - Mars 2000	5 421	5 864	3 795	4 007	43%	46%
Nov 2000 - Mars 2001	7 535	7 632	5 060	5 119	49%	49%
Nov 2001 - Mars 2002	2 548	2 919	1 807	2 053	41%	42%
Nov 2002 - Mars 2003	5 529	5 733	3 831	3 854	44%	49%
Nov 2003 - Mars 2004	2 711	3 376	2 060	2 415	32%	40%
Nov 2004 - Mars 2005	163	300	108	245	50%	22%
Nov 2005 - Mars 2006	1 572	1 995	1 120	1 458	40%	37%
Nov 2006 - Mars 2007	5 638	6 030	3 939	4 101	43%	47%
Nov 2007 - Mars 2008	1 843	2 336	1 373	1 692	34%	38%
Nov 2008 - Mars 2009	1 626	1 946	1 193	1 387	36%	40%
Nov 2009 - Mars 2010	4 228	4 671	3 000	3 204	41%	46%

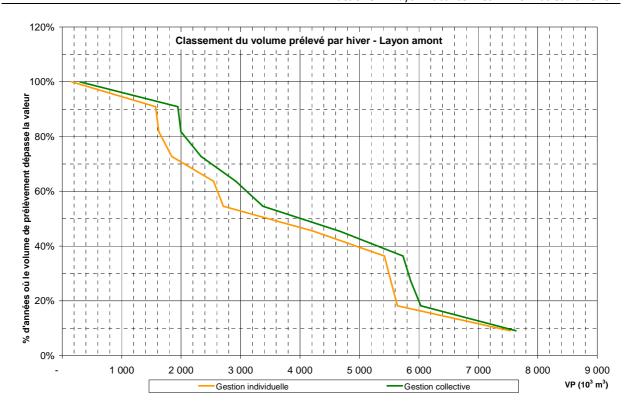


Figure 4–1 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon amont

Les volumes prélevables obtenus grâce à ce graphique sont comparés à ceux obtenus pour le scénario à 1,4 x le module dans le tableau ci-après :

Tableau 4-2: Comparaison des volumes prélevables en hiver - Layon amont

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	1 670	2 063		
SC 1,4	1 229	1 504		
SC 1,4 -> SC 1,6	36%	37%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-3 : Comparaison des volumes prélevables sur le Layon Amont

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	342	312	342	ı	ı	ı	ı	ı	ı	ı	331	342	1 670
(8 / 10)	Gestion collective	423	385	423		-		1	ı		1	409	423	2 063
Volume prélèvemer	•	1	-	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	-
					S	C 1,4								
Volume prélevable	Gestion individuelle	252	230	252	1		1	-	-	1	-	244	252	1 229
(8 / 10)	Gestion collective	308	281	308	-	-	-	-	-	-	-	298	308	1 504
Volume prélèvemer		-	-	-	-	-	-	-	-	-	-	-	-	-
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	418	387	418	81	99	276	311	174	108	418	407	418	3 515
	2003	491	450	491	82	120	359	230	234	103	491	477	491	4 019
	2009	474	435	474	90	91	280	450	223	103	474	461	474	4 031
Rejets	2010	139	125	139	112	116	112	116	116	112	139	134	139	1 498

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé et même avec le scénario de seuil haut à 1,6 x le module ;
- Le scénario de prélèvements à seuil haut 1,6 x le module en mode de gestion collective permet néanmoins de se rapprocher de ces prélèvements historiques moyens ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

ANNEXE 2 L'HYRÔME

Calcul des volumes prélevables en période hivernale

91

1 003

5 427

866

502

3 8 3 1

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

SC 1,6 SC 1.4 SC 1,4 -> SC 1,6 Volumes prélevés Gestion Gestion Gestion 10³ m3 Individuelle | Collective | Individuelle | Collective Individuelle Collective Nov 1999 - Mars 2000 47% 5 473 5 798 3 770 3 944 45% Nov 2000 - Mars 2001 6 704 4 560 4 585 47% 49% 6 850 Nov 2001 - Mars 2002 1 323 2 288 1 216 1 779 9% 29% Nov 2002 - Mars 2003 5 017 5 532 3 557 3 8 1 0 41% 45% Nov 2003 - Mars 2004 3 101 3 059 4 194 2 5 5 4 21% 37%

61

821

4 013

851

578

3 010

120

1 119

4 086

1 374

906

3 381

50%

22%

35%

2%

-13%

27%

25%

33%

47%

25%

25%

41%

151

1 490

5 994

1713

1 132

4 772

Tableau 4-4 : Comparaison des volumes hivernaux prélevés – Hyrôme

Ces volumes prélevés chaque hiver sont ensuite triés. Le classement des volumes de prélèvements est présenté sur le graphique suivant pour les deux modes de gestion étudiés.

Pour l'année 2009, les volumes prélevés en gestion individuelle diminuent avec l'augmentation du seuil haut de prélèvement à 1,6 x le module. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

98

Nov 2004 - Mars 2005

Nov 2005 - Mars 2006

Nov 2006 - Mars 2007

Nov 2007 - Mars 2008

Nov 2008 - Mars 2009

Nov 2009 - Mars 2010

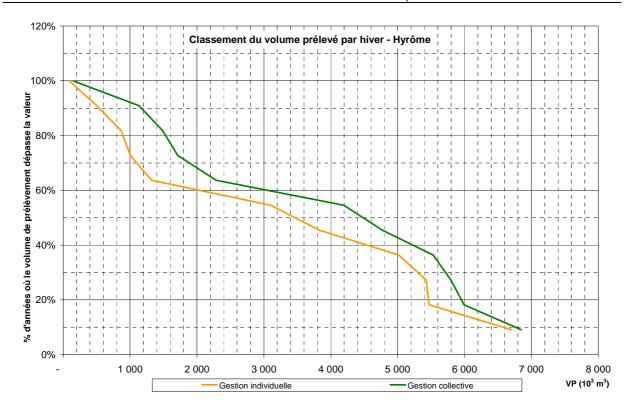


Figure 4–2 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Hyrôme

Tableau 4-5: Comparaison des volumes prélevables en hiver - Hyrôme

Volumes prélevables	G	estion
10^6 m3	Individuelle	Collective
SC 1,6	894	1 534
SC 1,4	827	1 170
SC 1,4 -> SC 1,6	8%	31%

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-6 : Comparaison des volumes prélevables sur l'Hyrôme

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	183	167	183	ı	ı	ı	ı	ı	1	ı	177	183	894
(8 / 10)	Gestion collective	314	287	314	ı	1		1	-	-	1	304	314	1 534
Volume prélèvemer	•	ı	-	-	ı	1	134	1	-	-	1	ı	-	134
					S	C 1,4								
Volume prélevable	Gestion individuelle	169	154	169	1	-	1	-	-		-	164	169	827
(8 / 10)	Gestion collective	240	219	240	-	-	-	-	-	-	-	232	240	1 170
Volume prélèvemer	•	-	-	-	-	-	134	-	-	-	-	-	-	134
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	236	215	236	17	35	209	246	108	41	236	228	236	2 043
	2003	276	249	276	17	56	310	173	178	39	276	267	276	2 392
	2009	266	240	266	17	17	221	403	159	31	266	257	266	2 408
Rejets	2010	94	85	94	78	81	78	47	47	78	94	91	94	960

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettaient pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, pour le scénario de seuil haut à 1,4 x le module ;
- En gestion des prélèvements collective et pour le scénario de seuil haut à 1,6 x le module, les volumes prélevables permettent de satisfaire ces volumes. En gestion individuelle, ce n'est néanmoins pas le cas ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 3 **LE LYS**

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-7: Comparaison des volumes hivernaux prélevés – Lys

Volumes prélevés	SC ·	1,6	SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gest	tion	
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	3 872	4 228	2 717	2 893	43%	46%	
Nov 2000 - Mars 2001	5 584	5 894	3 885	4 006	44%	47%	
Nov 2001 - Mars 2002	1 671	2 018	1 250	1 441	34%	40%	
Nov 2002 - Mars 2003	3 546	4 121	2 744	2 821	29%	46%	
Nov 2003 - Mars 2004	2 934	3 673	2 147	2 655	37%	38%	
Nov 2004 - Mars 2005	897	1 361	842	1 022	6%	33%	
Nov 2005 - Mars 2006	1 834	2 270	1 359	1 623	35%	40%	
Nov 2006 - Mars 2007	3 587	4 127	2 636	2 874	36%	44%	
Nov 2007 - Mars 2008	1 141	1 571	897	1 158	27%	36%	
Nov 2008 - Mars 2009	1 223	1 772	1 032	1 309	18%	35%	
Nov 2009 - Mars 2010	3 627	4 084	2 690	2 810	35%	45%	

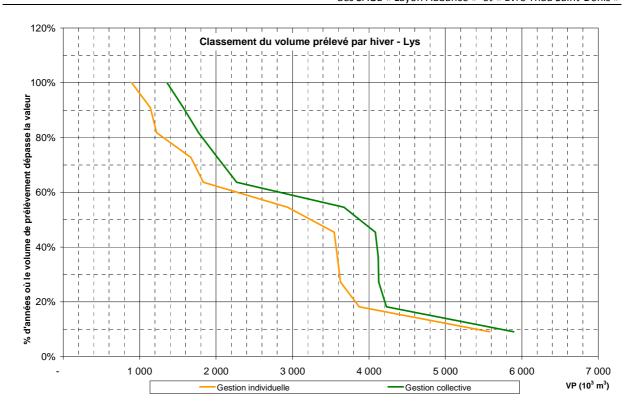


Figure 4-3: Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Lys

Tableau 4-8: Comparaison des volumes prélevables en hiver - Lys

Volumes prélevables	G	estion
10^6 m3	Individuelle	Collective
SC 1,6	1 312	1 821
SC 1,4	1 076	1 335
SC 1,4 -> SC 1,6	22%	36%

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-9 : Comparaison des volumes prélevables sur le Layon Amont

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	269	245	269	ı	ı	ı	ı	ı	ı	ı	260	269	1 312
(8 / 10)	Gestion collective	373	340	373	ı	ı	ı	ı	ı	ı	ı	361	373	1 821
Volume prélèvemer		ı	-	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	-
					S	C 1,4								
Volume prélevable	Gestion individuelle	221	201	221	1	-	1	-	1		-	213	221	1 076
(8 / 10)	Gestion collective	274	249	274	-	-	-	-	-	-	-	265	274	1 335
Volume prélèvemer		-	-	-	-	-	-	-	-	-	-	-	-	-
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	168	153	168	17	24	87	99	51	26	168	163	168	1 290
	2003	200	181	200	17	35	152	89	91	27	200	194	200	1 586
	2009	181	164	181	17	17	71	120	55	20	181	175	181	1 363
Rejets	2010	64	58	64	53	55	53	55	55	53	64	62	64	701

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé et même avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

ANNEXE 4 **LE LAYON INTERMÉDIAIRE**

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Layon amont, Lys, Hyrôme).

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Volumes prélevés	SC ·	1,6	SC	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gest	tion	
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	24 184	27 622	18 556	19 237	30%	44%	
Nov 2000 - Mars 2001	33 082	34 028	22 815	22 958	45%	48%	
Nov 2001 - Mars 2002	6 388	8 841	5 932	7 042	8%	26%	
Nov 2002 - Mars 2003	24 184	25 879	16 883	17 839	43%	45%	
Nov 2003 - Mars 2004	14 145	17 335	11 255	12 903	26%	34%	
Nov 2004 - Mars 2005	-	171	152	240	-	-29%	
Nov 2005 - Mars 2006	4 791	5 876	3 802	4 709	26%	25%	
Nov 2006 - Mars 2007	23 043	26 521	17 948	19 095	28%	39%	
Nov 2007 - Mars 2008	5 932	9 252	6 084	7 549	-2%	23%	
Nov 2008 - Mars 2009	5 476	6 641	4 259	5 031	29%	32%	
Nov 2009 - Mars 2010	17 796	20 229	12 928	14 636	38%	38%	

Tableau 4-10: Comparaison des volumes hivernaux prélevés – Layon intermédiaire

Pour les années 2005 et 2008, le scénario de seuil haut à 1,6 x le module conduit à des prélèvements sur les têtes de bassin plus importants. Ceci a pour conséquence la diminution des volumes prélevés sur le Layon intermédiaire qui voit une diminution des débits laissés en rivière en tête de bassin. Ceci peut également s'expliquer par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

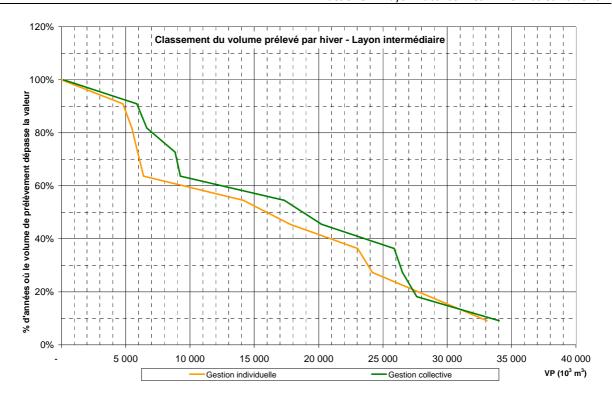


Figure 4–4 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon intermédiaire

A noter que le pourcentage d'années où le volume de prélèvement dépasse 27,5 millions de m³ est plus important en gestion individuelle qu'en gestion collective. Ce constat pourrait paraître étonnant mais est dû à un effet de représentation graphique. Effectivement, moins d'années dépassent les forts volumes en gestion individuelle et un effet de lissage a lieu car très peu de points sont présents sur cette partie de la courbe. Des cassures plus marquées liées à une présence de points plus importante figurent sur la courbe de la gestion collective. Ce phénomène très local d'interpolation explique donc cette inversion de courbe.

Les volumes prélevables obtenus grâce à ce graphique sont comparés à ceux obtenus pour le scénario à 1,4 x le module dans le tableau ci-après :

 Volumes prélevables
 Gestion

 10^6 m3
 Individuelle
 Collective

 SC 1,6
 5 567
 7 081

 SC 1,4
 4 593
 5 433

 SC 1,4 -> SC 1,6
 21%
 30%

Tableau 4-11: Comparaison des volumes prélevables en hiver – Layon intermédiaire

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4, malgré les diminutions des volumes prélevés en 2005 et 2008 constatées.

Tableau 4-12 : Comparaison des volumes prélevables sur le Layon intermédiaire

Volumes (103 m3)		Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	1 141	1 040	1 141	ı	-	ı	-	ı	ı	ı	1 104	1 141	5 567
(8 / 10)	Gestion collective	1 451	1 323	1 451	ı	-	1	-	-		1	1 404	1 451	7 081
Volume prélèvemer		-	-	-	-	-	284	-	-	1	1	-	ı	284
	SC 1,4													
Volume prélevable	Gestion individuelle	941	858	941	1	-	1	-	ı	1		911	941	4 593
(8 / 10)	Gestion collective	1 114	1 015	1 114	1	-	-	-	1	1	-	1 078	1 114	5 433
Volume prélèvemer		-	ı	ı	ı	-	284	-	1	ı	1	-	1	284
					His	torique	9							
Prélèvements	Moyens (2000 - 2010)	404	368	404	86	126	491	579	280	140	404	391	404	4 080
	2003	462	417	462	88	170	676	404	412	132	462	447	462	4 595
	2009	428	386	428	83	86	480	836	362	110	428	414	428	4 467
Rejets	2010	74	67	74	64	66	64	66	66	64	74	72	74	827

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé et même avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 5 **LE LAYON AVAL**

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Layon amont, Lys, Hyrôme, Layon intermédiaire).

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-13 : Comparaison des volumes hivernaux prélevés – Layon aval

Volumes prélevés	SC ·	1,6	SC ·	1,4	SC 1,4 ->	SC 1,6
volumes preieves	Gest	ion	Gest	ion	Gest	ion
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective
Nov 1999 - Mars 2000	32 153	33 899	22 144	22 914	45%	48%
Nov 2000 - Mars 2001	40 125	40 125	26 750	26 750	50%	50%
Nov 2001 - Mars 2002	9 832	13 188	7 972	9 568	23%	38%
Nov 2002 - Mars 2003	28 699	31 528	20 373	21 609	41%	46%
Nov 2003 - Mars 2004	18 601	23 280	14 704	16 574	27%	40%
Nov 2004 - Mars 2005	266	553	177	464	50%	19%
Nov 2005 - Mars 2006	6 112	8 457	4 783	6 211	28%	36%
Nov 2006 - Mars 2007	30 028	33 816	22 321	23 239	35%	46%
Nov 2007 - Mars 2008	8 503	13 025	7 263	9 783	17%	33%
Nov 2008 - Mars 2009	7 175	8 888	5 315	6 388	35%	39%
Nov 2009 - Mars 2010	22 056	26 246	16 298	18 555	35%	41%

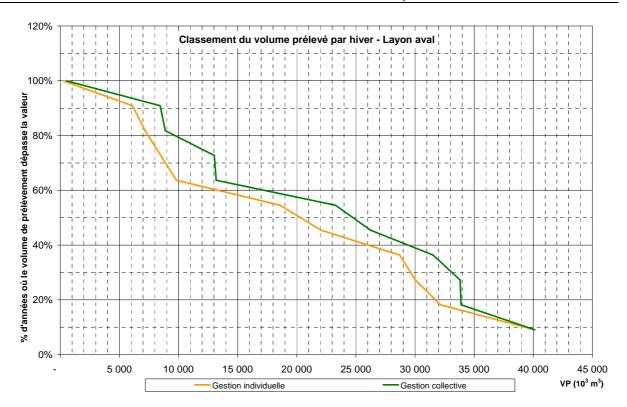


Figure 4–5 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Layon aval

Tableau 4-14 : Comparaison des volumes prélevables en hiver – Layon aval

Volumes prélevables	G	estion
10^6 m3	Individuelle	Collective
SC 1,6	7 440	9 715
SC 1,4	5 704	7 024
SC 1,4 -> SC 1,6	30%	38%

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-15 : Comparaison des volumes prélevables sur le Layon aval

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	1 525	1 390	1 525	ı	-	ı	ı	-		ı	1 476	1 525	7 440
(8 / 10)	Gestion collective	1 991	1 815	1 991	ı	-	ı	ı	-		ı	1 927	1 991	9 715
Volume prélèvemer		1	ı	ı	ı	-	469	ı	-		ı	1	ı	469
	SC 1,4													
Volume prélevable	Gestion individuelle	1 169	1 065	1 169	1	-	1	-	-		-	1 131	1 169	5 704
(8 / 10)	Gestion collective	1 440	1 312	1 440	1	-		-	-		-	1 393	1 440	7 024
Volume prélèvemer		-	-	-	-	-	469	-	-	-	-	-	-	469
					His	torique	9							
Prélèvements	Moyens (2000 - 2010)	158	144	158	34	38	62	73	49	37	158	153	158	1 221
	2003	187	169	187	34	41	74	57	57	37	187	181	187	1 400
	2009	181	164	181	33	34	75	114	64	36	181	176	181	1 422
Rejets	2010	38	34	38	27	28	27	28	28	27	38	37	38	388

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé y compris avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé en juin est supérieur aux prélèvements historiques reconstitués sur l'ensemble de la période estivale.

ANNEXE 6 **L'AUBANCE AMONT**

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-16 : Comparaison des volumes hivernaux prélevés – Aubance amont

Volumes prélevés	SC ²	1,6	SC ²	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gestion		Gest	tion	
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	2 673	3 486	2 258	2 493	18%	40%	
Nov 2000 - Mars 2001	4 538	4 622	3 087	3 096	47%	49%	
Nov 2001 - Mars 2002	963	1 209	704	876	37%	38%	
Nov 2002 - Mars 2003	3 325	3 887	2 424	2 728	37%	42%	
Nov 2003 - Mars 2004	2 548	2 862	1 782	1 992	43%	44%	
Nov 2004 - Mars 2005	31	49	21	39	50%	27%	
Nov 2005 - Mars 2006	591	771	435	570	36%	35%	
Nov 2006 - Mars 2007	3 419	3 879	2 569	2 649	33%	46%	
Nov 2007 - Mars 2008	963	1 378	808	1 006	19%	37%	
Nov 2008 - Mars 2009	777	1 011	601	737	29%	37%	
Nov 2009 - Mars 2010	1 336	1 697	1 077	1 229	24%	38%	

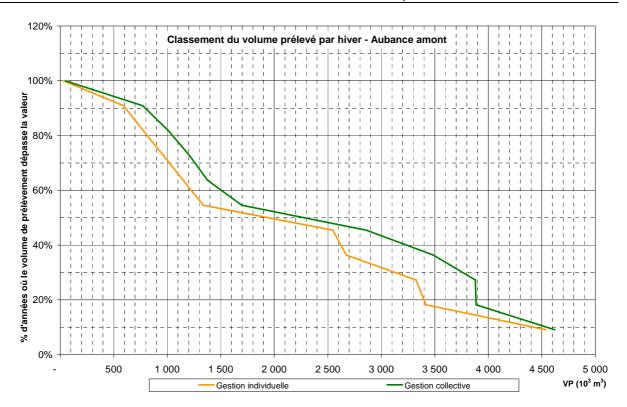


Figure 4–6 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Aubance amont

Tableau 4-17 : Comparaison des volumes prélevables en hiver – Aubance amont

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	814	1 051		
SC 1,4	622	765		
SC 1,4 -> SC 1,6	31%	37%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

814

1 051

71

622

765

71

123

152

127

157

Synthèse des volumes prélevables et analyse de satisfaction des besoins

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Janv Fév Mars Avril Mai Juin Juill Août Sept Oct Nov Volumes (103 m3) Déc Total SC 1,6 Gestion 167 152 167 162 167 Volume individuelle prélevable Gestion (8/10)215 196 215 208 215 collective

Tableau 4-18 : Comparaison des volumes prélevables sur l'Aubance amont

SC 1,4

70

70

1

1

Historique Moyens (2000 -139 127 139 17 28 134 157 71 31 139 135 139 1 257 2010) Prélèvements 2003 150 166 17 153 90 92 27 160 1 386 166 35 166 166 2009 155 140 155 17 17 138 247 101 25 155 150 155 1 456 Rejets 2010 89 80 89 73 76 73 76 76 73 89 86 89 968

Le tableau ci-dessus appelle les commentaires suivants :

Volume passif

prélèvement (8 / 10)

Volume passif

prélèvement (8 / 10)

Volume

prélevable

(8/10)

Gestion

individuelle

Gestion

collective

127

157

116

143

127

157

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, en mode de gestion individuelle pour un seuil haut à 1,4 x le module ;
- En mode de gestion collective pour un seuil haut à 1,4 x le module et en mode de gestion individuelle pour un seuil haut à 1,6 x le module, les volumes prélevables permettent de satisfaire en moyenne les volumes historiquement prélevés bien que ce ne soit pas le cas pour certaines années considérées individuellement ;
- En mode de gestion collective pour un seuil haut à 1,6 x le module, les volumes prélevables permettent de satisfaire les volumes historiquement prélevés.
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 7 **LE LOUET**

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Aubance amont).

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Volumes prélevés	SC ²	1,6	SC ²	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	ion	Gestion		
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	5 152	5 557	3 760	4 032	37%	38%	
Nov 2000 - Mars 2001	7 593	7 813	5 207	5 304	46%	47%	
Nov 2001 - Mars 2002	814	1 409	832	1 200	-2%	17%	
Nov 2002 - Mars 2003	5 749	6 600	4 375	4 709	31%	40%	
Nov 2003 - Mars 2004	3 905	4 723	3 001	3 407	30%	39%	
Nov 2004 - Mars 2005	-	-	-	-	-	-	
Nov 2005 - Mars 2006	597	886	506	701	18%	26%	
Nov 2006 - Mars 2007	6 074	6 686	4 592	4 773	32%	40%	
Nov 2007 - Mars 2008	1 898	3 356	1 952	2 690	-3%	25%	
Nov 2008 - Mars 2009	1 356	1 819	1 085	1 387	25%	31%	
Nov 2009 - Mars 2010	3 580	4 539	2 712	3 276	32%	39%	

Tableau 4-19 : Comparaison des volumes hivernaux prélevés – Louet

Pour les années 2002 (et 2007), le scénario de seuil haut à 1,6 x le module conduit à une diminution des volumes prélevés en gestion individuelle. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

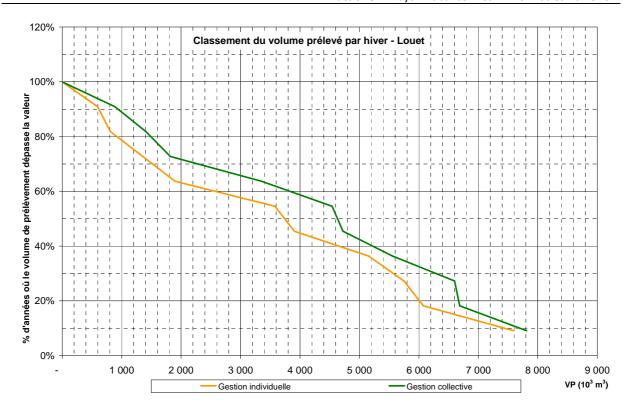


Figure 4–7 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Louet

Tableau 4-20 : Comparaison des volumes prélevables en hiver – Louet

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	922	1 491		
SC 1,4	882	1 237		
SC 1,4 -> SC 1,6	5%	21%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues En mode de gestion individuelle, une diminution des volumes prélevables a lieu entre le scénario de seuil haut à 1,4 x le module et à 1,6 x le module. Cela est dû au fait que les prélèvements sur les bassins amont sont plus importants et viennent diminuer les volumes disponibles sur le bassin du Louet.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-21 : Comparaison des volumes prélevables sur le Layon Amont

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	189	172	189	ı	ı	ı	ı	ı	ı	ı	183	189	922
(8 / 10)	Gestion collective	306	279	306	1	1		1	-	ı	1	296	306	1 491
Volume prélèvemen		ı	-	ı	1	1	204	43	-	ı	1	ı	-	247
					S	C 1,4								
Volume prélevable	Gestion individuelle	181	165	181	ı		1	1	-	1		175	181	882
(8 / 10)	Gestion collective	254	231	254	-	-	1	-	-	1	-	245	254	1 237
Volume prélèvemen		1	-	1	-	-	204	43	-	1	-	1	-	247
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	48	44	48	17	20	51	56	33	21	48	47	48	481
	2003	52	47	52	17	24	70	46	46	21	52	51	52	531
	2009	49	45	49	17	17	60	98	47	20	49	48	49	547
Rejets	2010	130	118	130	107	111	107	111	111	107	130	126	130	1 420

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé y compris avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé en juin et juillet est supérieur aux prélèvements historiques reconstitués sur l'ensemble de la période estivale.

ANNEXE 8 **LES MOULINS**

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-22 : Comparaison des volumes hivernaux prélevés – Les Moulins

Volumes prélevés	SC 1,6		SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	ion	Gest	ion	
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	1 002	1 013	673	678	49%	49%	
Nov 2000 - Mars 2001	1 164	1 164	776	776	50%	50%	
Nov 2001 - Mars 2002	447	576	339	420	32%	37%	
Nov 2002 - Mars 2003	894	953	632	647	41%	47%	
Nov 2003 - Mars 2004	609	716	442	503	38%	42%	
Nov 2004 - Mars 2005	-	25	5	24	-	3%	
Nov 2005 - Mars 2006	154	202	118	148	30%	36%	
Nov 2006 - Mars 2007	963	1 013	678	681	42%	49%	
Nov 2007 - Mars 2008	277	422	241	316	15%	34%	
Nov 2008 - Mars 2009	208	253	159	180	31%	40%	
Nov 2009 - Mars 2010	670	780	509	539	32%	45%	

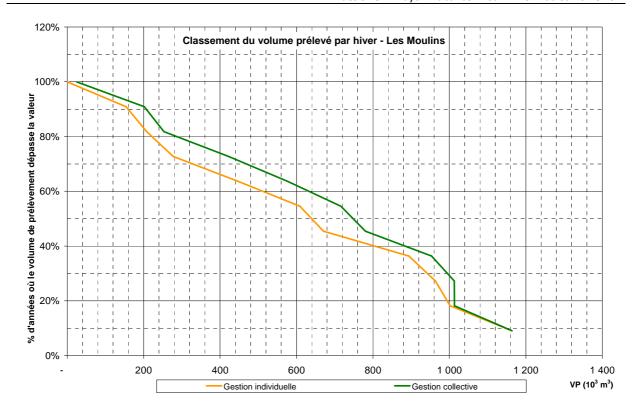


Figure 4–8 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur les Moulins

Tableau 4-23 : Comparaison des volumes prélevables en hiver – Les Moulins

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	222	287		
SC 1,4	176	207		
SC 1,4 -> SC 1,6	26%	38%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-24 : Comparaison des volumes prélevables sur les Moulins

Volumes (103 m3)	Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
					S	C 1,6								
Volume prélevable	Gestion individuelle	45	41	45	ı	ı	ı	ı	ı	ı	ı	44	45	222
(8 / 10)	Gestion collective	59	54	59	ı	ı	ı	ı	ı	ı	ı	57	59	287
Volume prélèvemer		-	-	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	-
					S	C 1,4								
Volume prélevable	Gestion individuelle	36	33	36	-	-	-	-	-	-	-	35	36	176
(8 / 10)	Gestion collective	43	39	43	-	-	-	-	-	-	-	41	43	207
Volume prélèvemer		-	-	-	-	-	-	-	-	-	-	-	-	-
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	86	79	86	18	20	32	34	26	20	86	84	86	657
	2003	102	92	102	18	24	62	42	42	21	102	99	102	809
	2009	94	85	94	18	19	30	41	27	19	94	91	94	705
Rejets	2010	5	4	5	4	4	4	4	4	4	5	4	5	49

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé et même avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

ANNEXE 9

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

SC 1,6 SC 1.4 SC 1,4 -> SC 1,6 Volumes prélevés Gestion Gestion Gestion 10^3 m3 Individuelle | Collective | Individuelle | Collective Individuelle Collective Nov 1999 - Mars 2000 2 740 47% 2 9 9 5 1 988 2 033 38% 2 441 Nov 2000 - Mars 2001 3 662 2 441 50% 50% 3 662 Nov 2001 - Mars 2002 1 261 1 678 938 1 231 34% 36% Nov 2002 - Mars 2003 2 837 3 010 1 988 2 041 43% 47% Nov 2003 - Mars 2004 2 134 1633 1 868 2 638 31% 41% Nov 2004 - Mars 2005 14 14 0% Nov 2005 - Mars 2006 461 564 339 406 36% 39% Nov 2006 - Mars 2007 3 080 3 217 2 150 2 157 43% 49% Nov 2007 - Mars 2008 1 018 1 757 1 035 1 336 -2% 32% Nov 2008 - Mars 2009 703 938 517 688 36% 36% Nov 2009 - Mars 2010 2 570 2 701 1 746 1 836 47% 47%

Tableau 4-25 : Comparaison des volumes hivernaux prélevés – Thau

Pour l'année 2008, les volumes prélevés en gestion individuelle diminuent avec l'augmentation du seuil haut de prélèvement à 1,6 x le module. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

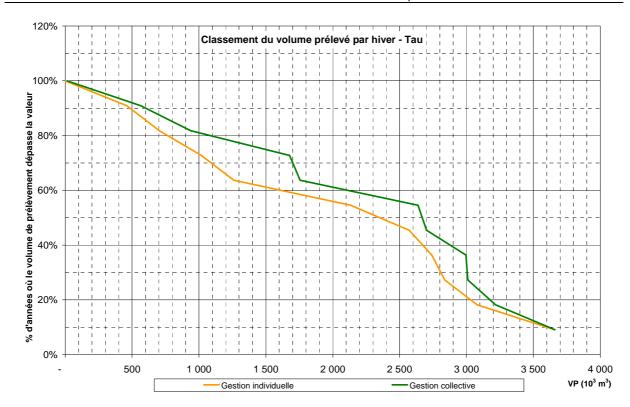


Figure 4-9: Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur la Thau

Tableau 4-26: Comparaison des volumes prélevables en hiver – La Thau

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	766	1 086		
SC 1,4	601	797		
SC 1,4 -> SC 1,6	27%	36%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Janv Fév Mars Avril Mai Juin Juill Août Sept Oct Nov Volumes (103 m3) Déc Total SC 1,6 Gestion Volume individuelle prélevable Gestion (8/10)1 086 collective Volume passif prélèvement (8 / 10) SC 1,4 Gestion Volume individuelle prélevable Gestion (8/10)collective Volume passif prélèvement (8 / 10) Historique Moyens (2000 -1 522 2010) Prélèvements 1 769 1 664 Rejets

Tableau 4-27: Comparaison des volumes prélevables sur la Thau

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, pour un seuil haut égal à 1,4 x le module, quel que soit le mode de gestion envisagé;
- Le scénario de prélèvements à seuil haut 1,6 x le module en mode de gestion individuelle ne permet pas non plus de satisfaire ces besoins historiques ;
- En gestion collective néanmoins le scénario de seuil haut à 1,6 x le module permet de remplir les conditions permettant la satisfaction des volumes historiquement prélevés en moyenne (bien que ces conditions ne soient pas remplies pour chacune des années prises indépendamment);
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est nul et ne correspond donc pas aux prélèvements historiques reconstitués sur cette période.

ANNEXE 10 L'EVRE AMONT

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-28 : Comparaison des volumes hivernaux prélevés – Evre amont

Volumes prélevés	SC 1,6		SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gestion		
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	12 528	14 249	9 484	9 750	32%	46%	
Nov 2000 - Mars 2001	16 032	16 032	10 688	10 688	50%	50%	
Nov 2001 - Mars 2002	7 644	8 716	5 379	6 067	42%	44%	
Nov 2002 - Mars 2003	12 953	13 845	9 060	9 395	43%	47%	
Nov 2003 - Mars 2004	8 600	10 925	6 370	7 917	35%	38%	
Nov 2004 - Mars 2005	-	531	-	531	-	0%	
Nov 2005 - Mars 2006	1 805	4 321	1 840	3 608	-2%	20%	
Nov 2006 - Mars 2007	14 121	14 225	9 484	9 498	49%	50%	
Nov 2007 - Mars 2008	3 079	5 257	2 760	4 032	12%	30%	
Nov 2008 - Mars 2009	2 973	4 457	2 336	3 386	27%	32%	
Nov 2009 - Mars 2010	10 617	12 117	7 786	8 351	36%	45%	

Pour l'année 2006, les volumes prélevés en gestion individuelle diminuent avec l'augmentation du seuil haut de prélèvement à 1,6 x le module. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

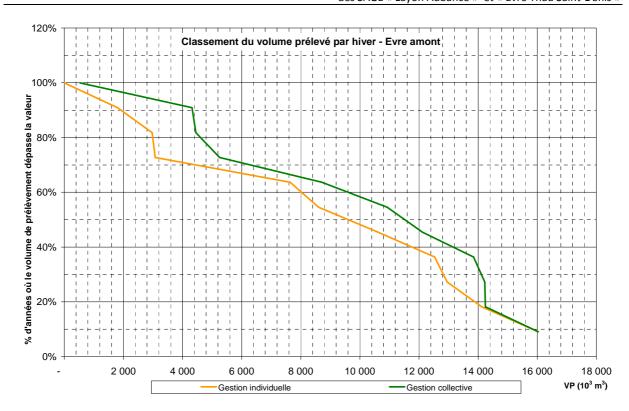


Figure 4–10 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre amont

Tableau 4-29 : Comparaison des volumes prélevables en hiver – Evre amont

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	2 994	4 617		
SC 1,4	2 421	3 693		
SC 1,4 -> SC 1,6	24%	25%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Volumes (103 m3) Janv Fév Mars Avril Mai Juin Juill Août Sept Oct Nov Déc Total SC 1,6 Gestion 2 994 Volume individuelle prélevable Gestion (8/10)4 617 collective Volume passif prélèvement (8 / 10) SC 1,4 Gestion Volume 2 421 individuelle prélevable Gestion (8/10)3 693 collective Volume passif prélèvement (8 / 10) Historique Moyens (2000 -3 401 2010) Prélèvements 3 847 4 063

Tableau 4-30 : Comparaison des volumes prélevables sur l'Evre Amont

Le tableau ci-dessus appelle les commentaires suivants :

1 268

Rejets

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent de satisfaire en moyenne les volumes historiquement prélevés sur le secteur en période hivernale, en mode de gestion individuelle pour un seuil haut égal à 1,4 x le module, bien que ce ne soit pas nécessairement le cas pour chaque année considérée indépendamment ;
- Le scénario de prélèvements à seuil haut de 1,6 x le module quelque soit le mode de gestion envisagé et le scénario de prélèvements à seuil haut de 1,4 x le module en mode de gestion collective permettent de satisfaire largement les volumes historiquement prélevés en période hivernale ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 11 **LE BEUVRON AMONT**

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Tableau 4-31 : Comparaison des volumes hivernaux prélevés – Beuvron amont

Volumes prélevés	SC 1,6		SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gestion		
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	1 410	1 778	1 141	1 262	24%	41%	
Nov 2000 - Mars 2001	2 534	2 534	1 690	1 690	50%	50%	
Nov 2001 - Mars 2002	1 091	1 510	873	1 110	25%	36%	
Nov 2002 - Mars 2003	1 997	2 130	1 410	1 444	42%	48%	
Nov 2003 - Mars 2004	1 276	1 553	918	1 110	39%	40%	
Nov 2004 - Mars 2005	-	24	-	24	-	0%	
Nov 2005 - Mars 2006	302	589	302	475	0%	24%	
Nov 2006 - Mars 2007	2 182	2 230	1 488	1 491	47%	50%	
Nov 2007 - Mars 2008	470	983	481	777	-2%	27%	
Nov 2008 - Mars 2009	520	795	403	609	29%	31%	
Nov 2009 - Mars 2010	1 578	1 809	1 153	1 249	37%	45%	

Pour l'année 2008, les volumes prélevés en gestion individuelle diminuent avec l'augmentation du seuil haut de prélèvement à 1,6 x le module. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

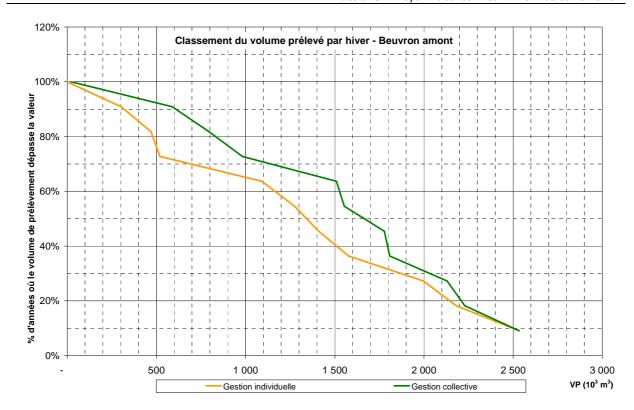


Figure 4–11 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur le Beuvron amont

Tableau 4-32 : Comparaison des volumes prélevables en hiver – Beuvron amont

Volumes prélevables	Gestion			
10^6 m3	Individuelle	Collective		
SC 1,6	480	832		
SC 1,4	418	643		
SC 1,4 -> SC 1,6	15%	30%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-33 : Comparaison des volumes prélevables sur le Beuvron Amont

Volumes (103 m3)		Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
SC 1,6														
Volume	Gestion individuelle	98	90	98	ı	ı	ı	ı	ı	ı	ı	95	98	480
prélevable (8 / 10)	Gestion collective	171	155	171	ı	ı	ı	ı	ı	ı	ı	165	171	832
Volume prélèvemer		ı	-	ı	ı	ı	49	ı	ı	ı	ı	1	ı	49
					S	C 1,4								
Volume prélevable	Gestion individuelle	86	78	86	1	-	1	-	-		-	83	86	418
(8 / 10)	Gestion collective	132	120	132	-	-	-	-	-	-	-	127	132	643
Volume prélèvemer		-	-	-	-	-	49	-	-	-	-	-	-	49
					His	storiqu	ie							
Prélèvements	Moyens (2000 - 2010)	101	92	101	18	22	59	60	37	23	101	98	101	811
	2003	118	107	118	18	32	116	71	72	25	118	114	118	1 028
	2009	110	100	110	18	19	43	65	36	20	110	107	110	847
Rejets	2010	50	45	50	44	46	44	46	46	44	50	48	50	565

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) ne permettent pas de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, en mode de gestion individuelle, quel que soit le seuil haut envisagé ;
- En mode de gestion collective, ces volumes historiques sont satisfaits de manière limite avec le seuil haut à 1,4 x le module alors que ces conditions sont remplies de manière plus larges avec un seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 12 **L'EVRE INTERMÉDIAIRE**

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Evre amont, Beuvron amont).

Calcul des volumes prélevables en période hivernale

Tableau 4-34 : Comparaison des volumes hivernaux prélevés – Evre intermédiaire

Volumes prélevés	SC ·	1,6	SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gestion		
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	15 480	19 818	13 553	15 192	14%	30%	
Nov 2000 - Mars 2001	27 790	28 136	18 775	18 775	48%	50%	
Nov 2001 - Mars 2002	8 766	12 435	8 331	9 757	5%	27%	
Nov 2002 - Mars 2003	20 889	22 320	14 672	15 665	42%	42%	
Nov 2003 - Mars 2004	11 191	15 209	9 947	11 508	13%	32%	
Nov 2004 - Mars 2005	-	18	-	18	-	0%	
Nov 2005 - Mars 2006	1 306	2 902	1 865	2 847	-30%	2%	
Nov 2006 - Mars 2007	21 449	24 157	16 413	16 527	31%	46%	
Nov 2007 - Mars 2008	4 290	7 551	4 352	6 410	-1%	18%	
Nov 2008 - Mars 2009	3 917	5 824	3 482	4 521	13%	29%	
Nov 2009 - Mars 2010	15 480	18 172	12 683	13 596	22%	34%	

Pour les années 2006 et 2008, le scénario de seuil haut à 1,6 x le module conduit à des prélèvements sur les têtes de bassin plus importants. Ceci a pour conséquence la diminution des volumes prélevés sur le Layon intermédiaire qui voit une diminution des débits laissés en rivière en tête de bassin. Ceci peut également s'expliquer par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

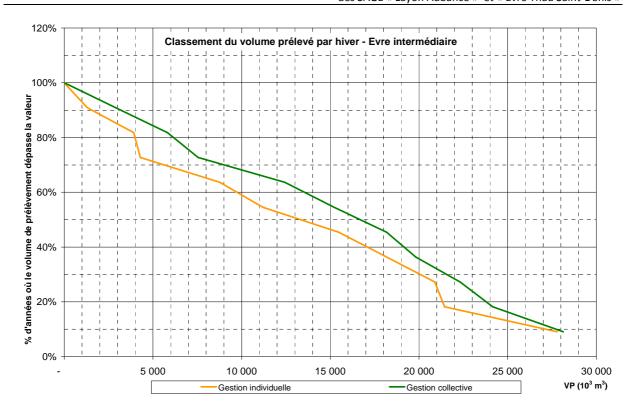


Figure 4–12 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre intermédiaire

Tableau 4-35 : Comparaison des volumes prélevables en hiver – Evre intermédiaire

Volumes prélevables	G	estion		
10^6 m3	Individuelle	Collective		
SC 1,6	3 991	6 170		
SC 1,4	3 656	4 899		
SC 1,4 -> SC 1,6	9%	26%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle. Il est également plus important avec le scénario à 1,6 qu'avec le scénario à 1,4. Ces constats sont cohérents avec les hypothèses de calcul retenues.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-36 : Comparaison des volumes prélevables sur l'Evre intermédiaire

Volumes (103 m3)		Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
SC 1,6														
Volume prélevable	Gestion individuelle	818	745	818	ı	-	ı	ı	-	ı	ı	792	818	3 991
(8 / 10)	Gestion collective	1 265	1 152	1 265	ı	-	ı	ı	-	ı	ı	1 224	1 265	6 170
Volume prélèvemer		1	ı	ı	ı	-	88	ı	-	ı	ı	1	ı	88
					S	C 1,4								
Volume prélevable	Gestion individuelle	749	683	749	1	-	1	-	-	-	-	725	749	3 656
(8 / 10)	Gestion collective	1 004	915	1 004	1	-		-	-	-	-	972	1 004	4 899
Volume prélèvemer		-	-	-	-	-	88	-	-	-	-	-	-	88
					His	torique	9							
Prélèvements	Moyens (2000 - 2010)	496	452	496	73	88	229	249	150	93	496	480	496	3 798
	2003	577	521	577	74	119	397	248	253	98	577	559	577	4 578
	2009	567	512	567	72	74	181	281	150	79	567	549	567	4 167
Rejets	2010	212	191	212	189	187	175	181	181	181	203	205	212	2 326

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé y compris avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 13 **L'EVRE AVAL**

L'ensemble des résultats ci-dessous sont établis à partir des débits théoriquement disponibles en rivière, c'est-à-dire à partir des débits naturels auxquels sont soustraits les prélèvements des bassins amont (Evre amont, Beuvron amont, Evre intermédiaire).

Calcul des volumes prélevables en période hivernale

Selon le mode de gestion des prélèvements retenu (individuel ou collectif), les seuils de déclenchement des prélèvements et les volumes prélevés diffèrent. Ces valeurs sont ensuite regroupées par année et figurent dans le tableau ci-dessous :

Volumes prélevés	SC ·	1,6	SC ·	1,4	SC 1,4 -> SC 1,6		
volumes preieves	Gest	ion	Gest	tion	Gestion		
10^3 m3	Individuelle	Collective	Individuelle	Collective	Individuelle	Collective	
Nov 1999 - Mars 2000	15 323	18 956	12 960	15 607	18%	21%	
Nov 2000 - Mars 2001	33 848	34 080	23 023	23 023	47%	48%	
Nov 2001 - Mars 2002	5 489	9 286	7 014	8 698	-22%	7%	
Nov 2002 - Mars 2003	24 014	25 326	17 381	17 762	38%	43%	
Nov 2003 - Mars 2004	11 664	14 657	9 910	12 362	18%	19%	
Nov 2004 - Mars 2005	-	6	-	6	-	0%	
Nov 2005 - Mars 2006	686	1 632	1 372	2 093	-50%	-22%	
Nov 2006 - Mars 2007	20 126	24 703	17 534	19 597	15%	26%	
Nov 2007 - Mars 2008	3 659	6 164	3 812	5 725	-4%	8%	
Nov 2008 - Mars 2009	2 516	4 425	3 507	4 337	-28%	2%	
Nov 2009 - Mars 2010	14 866	18 204	12 502	14 333	19%	27%	

Tableau 4-37 : Comparaison des volumes hivernaux prélevés – Evre aval

Pour l'année 2006, le scénario de seuil haut à 1,6 x le module conduit à des prélèvements sur les têtes de bassin plus importants. Ceci a pour conséquence la diminution des volumes prélevés sur l'Evre aval qui voit une diminution des débits laissés en rivière en tête de bassin.

Pour les années 2002, 2008 et 2009, les volumes prélevés en gestion individuelle diminuent avec l'augmentation du seuil haut de prélèvement à 1,6 x le module. Ceci peut sembler incohérent mais s'explique par le fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

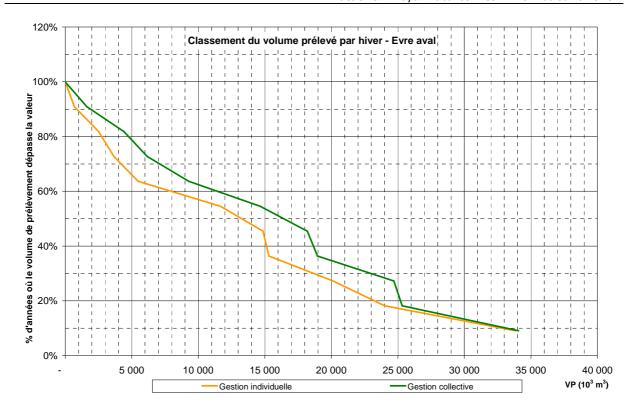


Figure 4–13 : Classement des volumes prélevés par hiver selon le mode de gestion des prélèvements sur l'Evre

Tableau 4-38 : Comparaison des volumes prélevables en hiver – Evre aval

Volumes prélevables	G	estion		
10^6 m3	Individuelle	Collective		
SC 1,6	2 744	4 773		
SC 1,4	3 568	4 615		
SC 1,4 -> SC 1,6	-23%	3%		

Le volume qu'il est possible de prélever est plus important en mode de gestion collective qu'en mode de gestion individuelle, ce qui est cohérent avec les hypothèses de calcul retenues En mode de gestion individuelle, une diminution des volumes prélevables a lieu entre le scénario de seuil haut à 1,4 x le module et à 1,6 x le module. Cela est notamment dû au fait qu'en gestion individuelle, l'autorisation de prélever n'est déclenchée qu'une fois le seuil haut atteint. Celui-ci étant plus haut, il peut donc y avoir des cas où moins de prélèvements sont autorisés car ce seuil haut n'est pas atteint alors qu'il l'était sous condition de 1,4 x le module.

Les volumes prélevables calculés en gestions individuelle et collective sont présentés dans le tableau ci-dessous et comparés aux volumes prélevés et rejetés historiquement sur le secteur.

Tableau 4-39 : Comparaison des volumes prélevables sur l'Evre aval

Volumes (103 m3)		Janv	Fév	Mars	Avril	Mai	Juin	Juill	Août	Sept	Oct	Nov	Déc	Total
SC 1,6														
Volume	Gestion individuelle	562	513	562	1	-	ı	ı	-	ı	ı	544	562	2 744
prélevable (8 / 10)	Gestion collective	978	891	978	1	-	ı	ı	-	ı	ı	947	978	4 773
Volume prélèvemer			-	ı	1	-	37	ı	-	ı	ı	ı	ı	37-
					S	C 1,4								
Volume prélevable	Gestion individuelle	731	666	731	-	-	-	-	-	-	-	708	731	3 568
(8 / 10)	Gestion collective	946	862	946	-	-	-	-	-	-	-	915	946	4 615
Volume prélèvemer		-	-	-		-	37	-	-	-	-	-	-	37
					His	torique	9							
Prélèvements	Moyens (2000 - 2010)	240	219	240	37	48	133	150	82	48	240	233	240	1 911
	2003	284	256	284	37	66	242	147	150	52	284	275	284	2 360
	2009	267	241	267	37	38	130	215	103	43	267	258	267	2 133
Rejets	2010	54	49	54	49	51	49	51	51	49	54	52	54	617

Le tableau ci-dessus appelle les commentaires suivants :

- Les volumes prélevables au sens réglementaire du terme (satisfaction de l'ensemble des usages 8 années sur 10) permettent largement de satisfaire les volumes historiquement prélevés sur le secteur en période hivernale, quel que soit le scénario de gestion des prélèvements envisagé, y compris avec le scénario de seuil haut à 1,6 x le module ;
- Pour la période estivale, le niveau de prélèvement passif des plans d'eau envisagé est inférieur aux prélèvements historiques reconstitués sur cette période.

ANNEXE 14 CONCLUSIONS SUR LE SCÉNARIO À 1,6 X LE MODULE

Les grandes tendances tirées de la première analyse (scénario de seuil haut à 1,4 x le module) peuvent être reprises ici.

En élevant le seuil haut d'autorisation des prélèvements à 1,6 x le module, les résultats obtenus par l'analyse précédente varient peu. Les masses d'eau pour lesquelles les besoins étaient satisfaits restent pourvues de ces capacités de volumes prélevables. Les masses d'eau souffrant d'un déficit de volumes prélevables restent affectées par ce constat. Néanmoins, ce résultat est moins tranché que pour l'analyse précédente (à 1,4).

Les principales modifications induites par un passage de seuil haut hivernal de 1,4 x le module à 1,6 x le module sont rappelées ci-après :

Tableau 4-40 : Bilan annuel des volumes prélevables proposés et des besoins historiques sur les différents sous-ensembles de masses d'eau de travail

	VOLUMES ANNUELS PRELEVABLES (10 ³ m ³)											
Sous-ensemble de masses d'eau	Influence amont?	VP gestion individuelle SC 1,4	VP gestion collective SC 1,4	VP gestion individuelle SC 1,6	VP gestion collective SC 1,6	Prélèvements historiques	Déficit global en gestion individuelle et SC 1,4 ?	Déficit global en gestion collective et SC 1,4 ?	Déficit en gestion individuelle et SC 1,6 ?	Déficit en gestion collective et SC 1,6 ?		
Layon amont	Non	1 229	1 504	1 670	2 063	3 515	Oui	Oui	Oui	Oui		
Hyrôme	Non	827	1 170	894	1 534	2 043	Oui	Oui	Oui	Oui		
Lys	Non	1 076	1 335	1 312	1 821	1 290	Oui	Non	Non	Non		
Layon intermédiaire	Oui	4 593	5 433	5 567	7 081	4 080	Non	Non	Non	Non		
Layon aval	Oui	5 704	7 024	7 440	9 715	1 221	Non	Non	Non	Non		
LAYON		13 429	16 468	16 883	22 215	12 149	Non	Non	Non	Non		
Aubance amont	Non	622	765	814	1 051	1 257	Oui	Oui	Oui	Oui		
Louet	Oui	882	1 237	922	1 491	481	Non	Non	Non	Non		
LOUET		1 504	2 002	1 736	2 542	1 737	Oui	Non	Oui	Non		
LAYON GLO	BAL	14 933	18 470	18 619	24 757	13 886	Non	Non	Non	Non		
Evre amont	Non	2 421	3 693	2 994	4 617	3 401	Oui	Non	Oui	Non		
Beuvron amont	Non	418	643	480	832	811	Oui	Oui	Oui	Non		
Evre intermédiaire	Oui	3 656	4 899	3 991	6 170	3 798	Oui	Non	Non	Non		
Evre aval	Oui	3 568	4 615	2 744	4 773	1 911	Non	Non	Non	Non		
EVRE		10 062	13 849	10 210	16 392	9 921	Non	Non	Non	Non		
Moulins	Non	176	207	222	287	657	Oui	Oui	Oui	Oui		
Tau	Non	601	797	766	1 086	1 522	Oui	Oui	Oui	Oui		
EVRE GLOE	BAL	10 840	14 853	11 198	17 765	12 100	Oui	Non	Oui	Non		